Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (3): 300-304    DOI: 10.11902/1005.4537.2016.151
Orginal Article Current Issue | Archive | Adv Search |
Corrosion Behavior of L245 Steel in Simulated Oilfield Produced Water at Different Temperatures
Ming ZHU(),Yong YU,Huihui ZHANG
College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
Download:  HTML  PDF(1556KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of L245 steel in simulated oilfield produced water was investigated by means of weight loss measurement, polarization curve measurement, electrochemical impedance spectra (EIS) and SEM. The results showed that the corrosion reaction of L245 steel is more intensive at higher temperature. When the temperature of the solution is elevated from 30 ℃ to 90 ℃, the corrosion current density of L245 steel in the solution with saturated CO2 increases from 66.1 μAcm-2 to 177 μAcm-2 while the charge transfer resistance of L245 steel decreased from 5155 Ωcm2 to 1182 Ωcm2. The above results indicated that the corrosivity of oilfield produced water increased with the increasing temperature within the range of 30~90 ℃, localized corrosion of the steel occurred at 60 ℃, then the localized corrosion would be intensified when the temperature is elevated to 90 ℃.

Key words:  L245 steel      simulated oilfield water      temperature      corrosion rate     
Received:  09 September 2016     
Fund: Supported by National Natural Science Foundation of China (51201131), Cultivation Fund of Xi’an University of Science and Technology (6310214005) and Doctoral Promoter Fund of Xi’an University of Science and Technology (6310115012)

Cite this article: 

Ming ZHU,Yong YU,Huihui ZHANG. Corrosion Behavior of L245 Steel in Simulated Oilfield Produced Water at Different Temperatures. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 300-304.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.151     OR     https://www.jcscp.org/EN/Y2017/V37/I3/300

Fig.1  Corrosion rates of L245 steel after immersed in simulated oilfield produced water with different temperatures for 10 d
Fig.2  Polarization curves of L245 steel in oilfield produced water with different temperatures
Fig.3  Nyquist (a) and Bode (b) diagrams of L245 steel in simulated oilfield produced water with different temperatures
Fig.4  Electrochemical equivalent circuits used for modeling of EIS of L245 steel in simulated oilfield produced water with different temperatures
T / ℃ ba / mVdec-1 bc / mVdec-1 Ecorr / mV Icorr / μAcm-2
30 160.5 117.5 -807.3 61.1
60 149.4 57.5 -757.3 95.2
90 145.5 54.1 -741.6 177
Table 1  Polarization curves fitting results of L245 carbon steel at different temperatures in simulated oilfield produced water
T / ℃ Rs / Ωcm2 Cd / μFcm-2 Rt / Ωcm2 Q / μFcm-2(n) Rf / Ωcm2
30 5.6 81 5155 207.5(0.83) 35.1
60 4.1 121 2891 398.5(0.68) 65.3
90 3.5 141 1182 468.9(0.57) 80.5
Table 2  Electrochemical parameters fitted from the EIS at different temperature
Fig.5  SEM images of L245 steel after immersion in simulated oilfield produced water for 10 d at 30 ℃ (a),60 ℃ (b) and 90 ℃ (c)
[1] Asperger R G, Teevens P, Ho-Chung-Qui D. Corrosion control and monitoring in gas pipelines and well systems [A]. Proceedings of the Corrosion/87 Symposium on Corrosion, Its Control and Monitori[C]. Houston: NACE, 1989: 34
[2] Zhou X Y.Effects of elemental sulfur and CO2 on P110 steel corrosion behavior [D]. Xi'an: Xi'an University of Technology, 2014
[2] (周学阳. 元素硫和CO2对P110钢腐蚀行为的影响 [D]. 西安: 西安工业大学, 2014)
[3] de Waard C, Milliams D E. Carbonic acid corrosion of steel[J]. Corrosion, 1975, 31: 177
[4] Linter B R, Burstein G T.Reactions of pipeline steels in carbon dioxide solutions[J]. Corros. Sci., 1999, 41: 117
[5] Xia Z, Chou K C, Szklarska-Smialowska Z.Pitting corrosion of carbon steel in CO2-containing NaCl Brine[J]. Corrosion, 1989, 45: 636
[6] Nesic S, Thevenot N, Crolet J L, et al.Electrochemical properties of iron dissolution in the presence of CO2-Basics revisited [A]. Proceedings of the Corrosion 1996[C]. Colorado: NACE International, 1996: 3
[7] Sun Y H, Nesic S.A parametric study and modeling on localized CO2 corrosion in horizontal wet gas flow [A]. Proceedings of the Corrosion/04[C]. Houston: NACE, 2004: 380
[8] Zhang G A, Cheng Y F.Localized corrosion of carbon steel in a CO2-saturated oilfield formation water[J]. Electro. Acta, 2011, 56: 1676
[9] Tang X, Cheng Y F.Localized dissolution electrochemistry at surface irregularities of pipeline steel[J]. Appl. Surf. Sci., 2008, 254: 5199
[10] Lv H C, Zuo Y.Technology of oilfield reinjection water treatment and development trend thereof[J]. Ind. Water Wastewater, 2009, 40(2): 15
[10] (吕慧超, 左岩. 油田回注水处理技术及其发展趋势[J]. 工业用水与废水, 2009, 40(2): 15)
[11] Schmitt G, Rothman B.Corrosion of unalloyed and low alloyed steels in carbonic acid solutions [A]. Corrosion/83[C]. Houston: NACE, 1984
[12] Ikeda A, Ueda M, Mukai S.CO2 Behavior of carbon and Cr steels [A]. Corrosion/83[C]. Houston: NACE, 1984
[13] Zhang G A, Cheng Y F.On the fundamentals of electrochemical corrosion of X65 steel in CO2-containing formation water in the presence of acetic acid in petroleum production[J]. Corros. Sci., 2009, 51: 87
[14] Ne?i? S.Key issues related to modelling of internal corrosion of oil and gas pipelines-a review[J]. Corros. Sci., 2007, 49: 4308
[15] Zhu S D, Yin Z F, Bai Z Q, et al.Influences of temperature on corrosion behavior of P110 steel[J]. J. Chin. Soc. Corros. Prot., 2009, 29: 493
[15] (朱世东, 尹志福, 白真全等. 温度对P110钢腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2009, 29: 493)
[16] Feng B, Yang M, Li B F, et al.Mechanism and influence factors of CO2 corrosion[J]. Liaoning Chem. Ind., 2010, 39: 976
[16] (冯蓓, 杨敏, 李秉风等. 二氧化碳腐蚀机理及影响因素[J]. 辽宁化工, 2010, 39: 976)
[17] Li J Z, Wang H C, Li N.The hazards and research status of carbon dioxide corrosion in oil and gas[J]. Guangzhou Chem. Ind., 2011, 39(21): 21
[17] (李建忠, 王海成, 李宁. 油气田开发中二氧化碳腐蚀的危害与研究现状[J]. 广州化工, 2011, 39(21): 21)
[1] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[2] JIA Shichao, GAO Jiaqi, GUO Hao, WANG Chao, CHEN Yangyang, LI Qi, TIAN Yimei. Influence of Water Quality on Corrosion of Cast Iron Pipe in Reclaimed Water[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[3] WANG Lei, DONG Junhua, HAN Da, LIANG Jiankun, LI Quan, KE Wei. Phenonmenon of Cu Segregation in Cu-containing steel During Soaking at 1150 ℃[J]. 中国腐蚀与防护学报, 2020, 40(6): 545-552.
[4] LIU Xiao, WANG Hai, ZHU Zhongliang, LI Ruitao, CHEN Zhenyu, FANG Xudong, XU Fanghong, ZHANG Naiqiang. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[5] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[6] WANG Haiwei, CHANG Sen, LUAN Xin'gang, SONG Xuemei, WANG Zhen, LI Yanzhang, CHEN Jianli, ZHANG Jirong, HAN Ming, QIU Dangui. Preparation and Properties of Ceramics Composed of Nano-Al2O3 and Polysiloxane-polyborosilicate-TiB2 Modified Polysilborazane as High Temperature Adhesive for SiC Based Ceramics[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
[7] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[8] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[9] ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[10] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[11] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[12] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[13] ZHAO Guoxian,HUANG Jing,XUE Yan. Corrosion Behavior of Materials Used for Surface Gathering and Transportation Pipeline in an Oilfield[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[14] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[15] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
No Suggested Reading articles found!