Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (3): 247-263    DOI: 10.11902/1005.4537.2016.035
Orginal Article Current Issue | Archive | Adv Search |
Degradation Behavior of a Modified Epoxy Coating in Simulated Deep-sea Environment
Hongyang GAO,Wei WANG,Likun XU(),Li MA,Zhangji YE,Xiangbo LI
State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute,Qingdao 266101, China
Download:  HTML  PDF(3774KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The degradation behavior of a modified epoxy resin coating was comparatively studied in sea water at atmospheric pressure and in a simulated deep-sea environment with high hydrostatic pressure of 6 MPa by means of electrochemical impedance spectroscopy (EIS), 3D optical microscope and scanning electron microscope (SEM). The results showed that the resistance of the coating decreased to 105 Ωcm2 after 30 d immersion under high hydrostatic pressure, while that decreased to 108 Ωcm2 at atmospheric pressure. The deep-sea environment can induce the enlargement of the active area and shorten the water-saturation process of coatings, therewith, the corrosion rate of the substrate was instantly accelerated. SEM showed that the hydrostatic pressure can deteriorate the attachment of pigments with the epoxy and weaken the adhesion between the epoxy coatings and the metal substrate. In this case, the active area of corrosion was enlarged, whilst the degradation of coatings and the corrosion of the steel substrate simultaneously occurred.

Key words:  deep sea environment with high pressure      modified epoxy coating      electrochemical impedance spectroscopy      coating degradation     
Received:  19 March 2016     
Fund: Supported by National Natural Science Foundation of China (51401185)

Cite this article: 

Hongyang GAO,Wei WANG,Likun XU,Li MA,Zhangji YE,Xiangbo LI. Degradation Behavior of a Modified Epoxy Coating in Simulated Deep-sea Environment. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 247-263.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.035     OR     https://www.jcscp.org/EN/Y2017/V37/I3/247

Fig.1  Nyquist (a, b) and Bode (c, d) plots of the modified epoxy coating immersed in sea water for different time at atmospheric pressure (Scattered points: experimental data, solid lines: fitting results)
Fig.2  Equivalent circuit model of Rs(CcRc)
Fig.3  Nyquist (a, b) and Bode (c, d) plots of the modified epoxy coating immersed in sea water for different time at 6 MPa (Scattered points: experimental data, solid lines: fitting results)
Fig.4  Equivalent circuit models of Rs(QcRc) (a) and Rs(Qc(Rc(QdlRct))) (b)
Fig.5  Impendences determined at 0.01 Hz for the epoxy coating after immersion for different periods in sea water at atmospheric pressure and 6 MPa pressure
Fig.6  Capacitance (a) and pore resistance (b) vs time curves of the modified epoxy coating immersed in sea water under atmospheric and 6 MPa pressures
Fig.7  Qdl (a) and Rct (b) vs time curves of the coated steel after immersion in sea water for 9 d under 6 MPa pressure
Fig.8  Evolutions of water absorption rates of the modified epoxy coating immersed in sea water under atmospheric and 6 MPa pressures
Fig.9  Surface morphologies of the modified epoxy coating before immersion test in sea water at atmo-spheric (a) and 6 MPa (b) pressures
Fig.10  Surface morphologies of the modified epoxy coating after immersion in sea water for 30 d at atmospheric (a) and 6 MPa (b) pressures
Fig.11  SEM images of the modified epoxy coating immersed in sea water for 30 d at atmospheric (a) and 6 MPa (b) pressures after pull-off tests
[1] Hou J, Guo W M, Deng C L.Influences of deep sea environmental factors on corrosion behavior of carbon steel[J]. Equip. Environ. Eng., 2008, 5(6): 82
[1] (侯健, 郭为民, 邓春龙. 深海环境因素对碳钢腐蚀行为的影响[J]. 装备环境工程, 2008, 5(6): 82)
[2] Traverso P, Canepa E.A review of studies on corrosion of metals and alloys in deep-sea environment[J]. Ocean Eng., 2014, 87: 10
[3] Sun H J, Liu L, Li Y, et al.Effect of hydrostatic pressure on the corrosion behavior of a low alloy steel[J]. J. Electrochem. Soc., 2013, 160: C89
[4] Raja K S, Jones D A.Effects of dissolved oxygen on passive behavior of stainless alloys[J]. Corros. Sci., 2006, 48: 1623
[5] Zhang T, Yang Y, Shao Y W, et al.A stochastic analysis of the effect of hydrostatic pressure on the pit corrosion of Fe-20Cr alloy[J]. Electrochim. Acta, 2009, 54: 3915
[6] Wan H X, Du C W, Liu Z Y, et al.The effect of hydrogen on stress corrosion behavior of X65 steel welded joint in simulated deep sea environment[J]. Ocean Eng., 2016, 114: 216
[7] Peng W C, Hou J, Guo W M.Research progress on the corrosion of aluminum alloy in deep ocean[J]. Dev. Appl. Mater., 2010, 25(1): 59
[7] (彭文才, 侯健, 郭为民. 铝合金深海腐蚀研究进展[J]. 材料开发与应用, 2010, 25(1): 59)
[8] Sawant S S, Wagh A B.Corrosion behaviour of metals and alloys in the waters of the Arabian Sea[J]. Corros. Prev. Control, 1990, 36: 154
[9] Venkatesan R, Venkatasamy M A, Bhaskaran T A, et al.Corrosion of ferrous alloys in deep sea environments[J]. Br. Corros. J., 2002, 37: 257
[10] Zhang X H, Fang D Q, Gao B, et al.Development of epoxy glass flakes coatings for off-shore steel structures[J]. Dev. Appl. Mater., 2015, 30(1): 15
[10] (张贤慧, 方大庆, 高波等. 海洋钢结构用环氧玻璃鳞片涂料的开发[J]. 材料开发与应用, 2015, 30(1): 15)
[11] Liu L, Cui Y, Li Y, et al.Failure behavior of nano-SiO2 fillers epoxy coating under hydrostatic pressure[J]. Electrochim. Acta, 2012, 62: 42
[12] Liu B, Li Y, Lin H C, et al.Progress in study on degradation of anti-corrosion coatings[J]. Corros. Sci. Prot. Technol., 2001, 13: 305
[12] (刘斌, 李瑛, 林海潮等. 防腐蚀涂层失效行为研究进展[J]. 腐蚀科学与防护技术, 2001, 13: 305)
[13] S?rensen P A, Kiil S, Dam-Johansen K, et al.Anticorrosive coatings: A review[J]. J. Coat. Technol. Res., 2009, 6: 135
[14] Van Westing E P M, Ferrari G M, Geenen F M, et al. In situ determination of the loss of adhesion of barrier epoxy coatings using electrochemical impedance spectroscopy[J]. Prog. Org. Coat., 1993, 23: 89
[15] Guo W M, Li W J, Chen G Z.Corrosion testing in the deep ocean[J]. Equip. Environ. Eng., 2006, 3(1): 10
[15] (郭为民, 李文军, 陈光章. 材料深海环境腐蚀试验[J]. 装备环境工程, 2006, 3(1): 10)
[16] See S C, Zhang Z Y, Richardson M O W. A study of water absorption characteristics of a novel nano-gelcoat for marine application[J]. Prog. Org. Coat., 2009, 65: 169
[17] Czarnecki L, Garbacz A, Krystosiak M.On the ultrasonic assessment of adhesion between polymer coating and concrete substrate[J]. Cem. Concr. Compos., 2006, 28: 360
[18] Zhang J Q, Cao C N.Study and evaluation on organic coatings by electrochemical impedance spectroscopy[J]. Corros. Prot., 1998, 19: 99
[18] (张鉴清, 曹楚南. 电化学阻抗谱方法研究评价有机涂层[J]. 腐蚀与防护, 1998, 19: 99)
[1] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[2] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[3] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[4] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[5] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[6] Sanxi DENG, Xiaoyu YAN, Ke CHAI, Jinyi WU, Hongwei SHI. Effect of Pseudomonas sp. on Decomposition and Anticorrosion Behavior of Polysiloxane Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[7] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[8] Qi GUI, Dajiang ZHENG, Guangling SONG. Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[9] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[10] Fandi MENG, Li LIU, Ying LI, Fuhui WANG. Embedded Microelectrode for In situ Electrochemical Impedance Spectroscopy Measurement of Organic Coating Under Marine Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
[11] Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 575-582.
[12] Jia WANG, Mengyang JIA, Zhaohui YANG, Bing HAN. On Completeness of EIS Equivalent Circuit Analysis for Electrochemical Corrosion Process[J]. 中国腐蚀与防护学报, 2017, 37(6): 479-486.
[13] Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[14] Yalin CHEN, Wei ZHANG, Qi WANG, Jia WANG. Debonding Mechanism of Organic Coating with Artificial Defect in Areas Nearby Water-line in 3.5%NaCl Solution by WBE Technique-II[J]. 中国腐蚀与防护学报, 2017, 37(4): 322-328.
[15] Zhixiao XU,Herong ZHOU,Wang YAO. Corrosion Behavior of Automotive Cold Rolled Steels DC06 and DP600 in NaHSO3 Solution[J]. 中国腐蚀与防护学报, 2017, 37(2): 155-161.
No Suggested Reading articles found!