Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (3): 216-220    DOI: 10.11902/1005.4537.2016.043
Orginal Article Current Issue | Archive | Adv Search |
Effect of External Electric Field on Inhibition Behavior of Cyclohexylamine Carbonate for Carbon Steel N80 Beneath Adsorbed Thin Electrolyte Layers
Zijing ZHU1,Lisha WEI1,Zhenyu CHEN1,2(),Yubing QIU2,Xingpeng GUO1,2
1 Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2 Key Laboratory for Material Chemistry of Energy Conversion and Storage, Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
Download:  HTML  PDF(2088KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of external electric field on the inhibition efficiency of cyclohexylamine carbonate (CHC) for carbon steel N80 beneath adsorbed thin electrolyte layers (ATEL) was investigated by means of electrochemical measurement, scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). The results illustrated that CHC mainly suppresses the anodic corrosion reaction and has strong inhibition effect on the carbon steel corrosion. When an electric field vertical to the steel was applied, the inhibition efficiency of CHC decreased greatly and the adsorption of CHC on the carbon steel surface decreased significantly, so that the surface morphology varied quite obviously after corrosion test.The relevant quantum chemical parameters related to the corrosion inhibition efficiency of CHC were calculated by materials studio software. The acquired parameters such as dipole moment (μ), EHOMO, ELUMO and ?E all implied that the reactivity and adsorption ability of CHC were reduced significantly after applying external electric field, which affects the inhibition efficiency of CHC.

Key words:  vapor phase inhibitor      thin electrolyte film      external electric field      quantum chemical     
Received:  30 March 2016     
Fund: Supported by National Natural Science Foundation of China (51571098)

Cite this article: 

Zijing ZHU,Lisha WEI,Zhenyu CHEN,Yubing QIU,Xingpeng GUO. Effect of External Electric Field on Inhibition Behavior of Cyclohexylamine Carbonate for Carbon Steel N80 Beneath Adsorbed Thin Electrolyte Layers. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 216-220.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.043     OR     https://www.jcscp.org/EN/Y2017/V37/I3/216

Fig.1  Schematic diagram of the experimental setup for electrochemical measurements in the electrical field
Fig.2  Potentiodynamic polarization curves of N80 steel under NaCl-containing ATEL at RH 98% and 55 ℃
Test condition Ecorr / mV (vs SCE) Icorr / Acm-2 ba / mVdec-1 bc / mVdec-1 η
Blank -724 1.92×10-4 329 -167 ---
1.5×105 V/m -724 1.98×10-4 185 -174 ---
CHC -520 1.37×10-5 294 -133 92.8%
1.5×105 V/m+CHC -605 1.56×10-4 255 -138 18.8%
Table 1  Characteristic parameters obtained from polarization curves of N80 steel under NaCl-containing ATEL at RH 98% and 55 ℃
Fig.3  Nyquist plots of N80 steel under NaCl-containing ATEL at RH 98% and 55 ℃
Fig.4  Equivalent circuit for N80 steel under NaCl-containing ATEL at RH 98% and 55 ℃
Test condition Rct / Ωcm2 Qdl / SnΩ-1cm-2 Rf / Ωcm2 Qf / SnΩ-1cm-2 θ
Blank 442 5.73×10-3 15.4 2.3×10-3 ---
1.5×105 V/m 421 1.18×10-3 12.3 3.4×10-3 ---
CHC 5350 4.14×10-3 41.97 2.45×10-3 91.7%
1.5×105 V/m+CHC 521 2.31×10-3 11.5 2.38×10-4 15.2%
Table 2  Fitting parameters of EIS of N80 steel under NaCl-containing ATEL at RH 98% and 55 ℃
Fig.5  SEM images of N80 steel after corrosion for 3 d under NaCl-containing ATEL at RH 98% and 55 ℃: (a) blank, (b) 1.5×105 V/m, (c) CHC, (d) 1.5×105 V/m+CHC
Fig.6  XPS spectra of N80 steel after corrosion for 3 d under ATEL
F / Vm-1 μ / debye EHOMO / eV ELUMO / eV |ELUMO-EHOMO| / eV Negative charge on N
0 0.7922 -4.521 -4.191 0.330 -0.174
0.5×105 0.8136 -5.256 -4.810 0.446 -0.172
1.0×105 0.8233 -5.276 -4.797 0.479 -0.149
1.5×105 0.8272 -5.911 -5.334 0.577 -0.147
Table 3  Quantum chemical parameters in the electric fields with different intensities
[1] Ten F, Hu G.Research progress of vapor phase inhibitors[J]. Corros. Sci. Prot. Technol., 2014, 26: 360)
[1] (滕飞, 胡钢. 气相缓蚀剂的研究进展[J]. 腐蚀科学与防护技术, 2014, 26: 360)
[2] Ju Y L, Li Y.Research progress of vapor phase inhibitors[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 27
[2] (鞠玉琳, 李焰. 气相缓蚀剂的研究进展[J]. 中国腐蚀与防护学报, 2014, 34: 27
[3] Rammelt U, Koehler S, Reinhard G.Efficiency of vapor phase corrosion inhibitors for ferrous metals in neutral and alkaline solutions[J]. Corrosion, 2011, 67: 045001
[4] Shi W Y, Cang H, Xia Y, et al.Quantum chemical and molecular dynamics studies on the corrosion inhibition mechanism of five kinds of amino acids[J]. J. Yancheng Inst. Technol.(Nat. Sci. Ed.), 2011, 24(2): 25
[4] (石文艳, 仓辉, 夏媛等. 5种氨基酸缓蚀机理的量子化学及分子动力学研究[J]. 盐城工学院学报 (自然科学版), 2011, 24(2): 25)
[5] Yang H Y, Chen J J, Cao C N, et al.Study on corrosion and inhibition mechanism in H2S aqueous solutions-VI. The relationship between molecular structure of imidazoline derivatives and inhibition performance in H2S solutions[J]. J. Chin. Soc. Corros. Prot., 2002, 22: 148
[5] (杨怀玉, 陈家坚, 曹楚南等. H2S水溶液中的腐蚀与缓蚀作用机理的研究—VI. H2S溶液中咪唑啉衍生物分子结构与其缓蚀性能的关系[J]. 中国腐蚀与防护学报, 2002, 22: 148
[6] Taleb M, Didierjean C, Jelsch C, et al.Equilibrium kinetics of lysozyme crystallization under an external electric field[J]. J. Cryst. Growth, 2001, 232: 250
[7] Tan Y, Huang X, Xu X, et al.Theoretical studies on the effect of electric field on the structures of metal string complex Ni3(dpa)4Cl2[J]. Chem. J. Chin. Univ., 2012, 33: 1278
[7] (谭莹, 黄晓, 许旋等. 电场对Ni3(dpa)4Cl2金属串配合物结构影响的理论研究[J]. 高等学校化学学报, 2012, 33: 1278)
[8] Yue Q, Shao Z Z, Chang S L, et al.Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field[J]. Nanoscale Res. Lett., 2013, 8: 425
[9] Li Y D.The influence of electric field on electron density of molecule wires[J]. Chin. J. Low Temp. Phys., 2008, 30: 182
[9] (李英德. 电场对分子线电荷密度的影响[J]. 低温物理学报, 2008, 30: 182)
[10] Grüber C, Buss V.Quantum-mechanically calculated properties for the development of quantitative structure-activity relationships (QSAR'S). pKA-values of phenols and aromatic and aliphatic carboxylic acids[J]. Chemosphere, 1989, 19: 1595
[11] Zhang C, Duan H B, Zhao J M.Synergistic inhibition effect of imidazoline derivative and L-cysteine on carbon steel corrosion in a CO2-saturated brine solution[J]. Corros. Sci., 2016, 112: 160
[12] Hu Q S, Hu J C, Yu J H, et al.Quantitative structure-activity relationship studies on corrosion inhibition of benzimidazole and its derivatives[J]. J. Chin. Soc. Corros. Prot., 2010, 30: 354
[12] (胡松青, 胡建春, 郁金华等. 苯并咪唑及其衍生物缓蚀性能的定量构效关系研究[J]. 中国腐蚀与防护学报, 2010, 30: 354)
[13] Zhang D Q, Gao L X, Zhou G D.Molecular design and synergistic effect of morpholinium type volatile corrosion inhibitor[J]. J. Chin. Soc. Corros. Prot., 2006, 26: 120
[13] (张大全, 高立新, 周国定. 吗啉衍生物气相缓蚀剂的分子设计和缓蚀协同作用研究[J]. 中国腐蚀与防护学报, 2006, 26: 120)
[14] Li Y, Guo Y, Cai H, et al.Quantum chemistry study of the structure-activity relationship of corrosion inhibitor[J]. Corros. Prot.,2007, 28: 392
[14] (李酽, 郭英, 才华等. 缓蚀剂构效关系的量子化学研究[J]. 腐蚀与防护, 2007, 28: 392)
[15] Khalil N.Quantum chemical approach of corrosion inhibition[J]. Electrochim. Acta, 2003, 48: 2635
[1] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[2] JU Yulin,LI Yan. Research Progress of Vapor Phase Inhibitors[J]. 中国腐蚀与防护学报, 2014, 34(1): 27-36.
[3] FENG Lijuan,ZHAO Kangwen,TANG Nan,YANG Huaiyu,WANG Fuhui,SHANGGUAN Tie. Inhibition and Synergistic Effect of Mixtures of Oxygen-containing Organic Compounds with Sodium Dodecyl Benzene Sulfate on Steel Rebar Corrosion in 3.5%NaCl Saturated Ca(OH)2 Solution[J]. 中国腐蚀与防护学报, 2013, 33(6): 441-448.
[4] CAO Kun, LI Weihua, YU Liangmin, LI Yunju,HOU Baorong. THEORETICAL STUDY OF PYRAZOLONE AS CORROSION INHIBITOR OF STEEL IN 1 mol/L HCl MEDIA[J]. 中国腐蚀与防护学报, 2010, 30(4): 278-282.
[5] Daquan Zhang; Lixin Gao; Guoding Zhou. Molecular design and synergistic effect of morpholinium type volatile corrosion inhibitor[J]. 中国腐蚀与防护学报, 2006, 26(2): 120-124 .
[6] Xinkuai He. The Present Situation and the Development of Vapor Phase Inhibitor[J]. 中国腐蚀与防护学报, 2004, 24(4): 245-248 .
[7] Xueyuan Zhang; Gan Yu; Enhou Han. THE INHIBITION MECHANISM OF CYCLOHEXYLAMMONIUM TYPES OF INHIBITORS ON THECORROSION OF ZINC UNDER THIN ELECTROLYTE[J]. 中国腐蚀与防护学报, 2003, 23(3): 175-178 .
[8] Wei Zhao; Mingzhu Xia; Wu Lei. QUANTUM CHEMISTRY STUDIES OF ORGANOPHOSPHORUS CORROSION INHIBITORS[J]. 中国腐蚀与防护学报, 2002, 22(4): 217-220 .
[9] Tang Zilong;Song Shizhe(Tianjin University). SOME ASPECTS OF QUANTUM CHEMICAL STUDY ON ORGANIC INHIBITORS[J]. 中国腐蚀与防护学报, 1995, 15(3): 229-236.
No Suggested Reading articles found!