Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (2): 135-141    DOI: 10.11902/1005.4537.2016.009
Orginal Article Current Issue | Archive | Adv Search |
Effect of Temperature on Initiation of Metastable Pits and Geometric Features of Stable Pits for 304 Stainless Steel
Yingjun AI1,Nan DU1(),Qing ZHAO1,Shixin HUANG1,Liqiang WANG2,Qingjie WEN2
1 National Defense Key Discipline Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
2 Department of Manufacture Engineering, Chengdu Aircraft Lndustrial (Group) Co., Ltd., Chengdu 610092, China
Download:  HTML  PDF(1892KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of temperature on pitting behavior and corrosion morphology of 304 stainless steel in 3.5%NaCl solution was studied by means of potentiostatic polarization, potentiodynamic polarization, electrochemical impedance spectroscopy (EIS) and three-dimensional video microscope. The results showed that as the temperature increased from 20 ℃ to 40 ℃, the initiation period of metastable pits shortened, the number the nuclei formed per unit time increased, the average peak-current and the average peak-width (which could represent the lifetime of metastable pits) increased, therefore, the increasing number of metastable pits led to higher probability for the occurrence of stable pits. The growth rate of pitting current, pit volume, pit mouth diameter and pit depth of single pit increased with the increasing temperature by applied potential of 0.15 V(vs SCE). The growth rate of pit mouth diameter and pit depth gradully decreased with the extension of time at the same temperature. The corrosion pit was incompletely covered by lace-like corrosion products, and of which the integrity decreased with the increase of temperature.

Key words:  304 stainless steel      temperature      metastable pit      stable pit      dynamics     
Received:  08 January 2016     
Fund: Supported by National Natural Science Foundation of China (51561024)

Cite this article: 

Yingjun AI,Nan DU,Qing ZHAO,Shixin HUANG,Liqiang WANG,Qingjie WEN. Effect of Temperature on Initiation of Metastable Pits and Geometric Features of Stable Pits for 304 Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 135-141.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.009     OR     https://www.jcscp.org/EN/Y2017/V37/I2/135

Fig.1  Curves of transient current vs time for metastable pits of 304 stainless steel in 3.5%NaCl solution at all test temperatures (a) and only 20 ℃ (b)
Temperature / ℃ t / s N I / μA τ / s
20 351.3 1 0.2 0.8
30 199.9 2 1.3 4.0
40 90.7 3 19.2 6.4
Table 1  Parameters about initiation of metastable pitting at different temperatures
Fig.2  Dynamic potential polarization curves of 304 stainless steel during immersion in 3.5%NaCl solution at different temperatures
Temperature℃ Ecorr (SCE)V IcorrnAcm-2 EbV EpV Eb-EpV
20 -0.279 9.711 0.340 0.120 0.220
30 -0.289 13.743 0.255 0.011 0.244
40 -0.284 23.693 0.230 -0.015 0.245
Table 2  Fitting data of polarization curves for 304 stainless steel in 3.5%NaCl solution at different temperatures
Fig.3  Nyquist plots of 304 stainless steel in 3.5%NaCl solution at different temperatures
Fig.4  Equivalent circuit diagram for EIS of 304 stainless steel in 3.5%NaCl solution at different temperatures
Temperature℃ RsΩcm2 Y0μSsncm-2 ndl RctMΩcm2
20 26.43 4.803 0.8667 3.962
30 18.18 5.055 0.8456 0.223
40 15.47 5.993 0.8110 0.205
Table 3  Fitting data of EIS of 304 stainless steel in 3.5%NaCl solution at different temperatures
Fig.5  Curves of dissolution current vs time for single pit of 304 stainless steel in 3.5%NaCl solution at different temperatures
Fig.6  Fitted results of dissolution current vs time curves for single pit of 304 stainless steel in 3.5%NaCl solution at 20 ℃ (a), 30 ℃ (b) and 40 ℃ (C)
Temperature / ℃ Surface diameter
μm
Base diameter
μm
Depth
μm
Volume
μm3
20 71.137 35.990 28.371 6.45×104
30 80.293 44.598 33.203 7.05×104
40 88.459 52.685 39.268 9.92×104
Table 4  Geometrical parameters of single pit after polarization at different temperatures
Fig.7  Evolutions of pit volume (a), mouth diameter (b) and pit depth (c) of single pit of 304 stainless steel in 3.5%NaCl solution at different temperatures
Fig.8  Pit corrosion morphologies of 304 stainless steel in 3.5%NaCl solution at 20 ℃ (a), 30 ℃ (b) and 40 ℃ (c)
[1] Xiao J M.Metallography of Stainless Steel [M]. 2nd Ed. Beijing: Metallurgical Industry Press, 2006
[1] (肖纪美. 不锈钢的金属学问题 [M]. 第2版. 北京: 冶金工业出版社, 2006)
[2] Chen Y, Chen X, Liu T, et al.Effect of potential on electrochemical corrosion behavior of 316L stainless steel in borate buffer solution[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 137
[2] (陈宇, 陈旭, 刘彤等. 成膜电位对316L不锈钢在硼酸溶液中电化学行为的影响[J]. 中国腐蚀与防护学报, 2015, 35: 137)
[3] Zhang Z M, Peng Q J, Wang J Q, et al.Stress corrosion cracking behavior of forged 316L stainless steel used for nuclear power plants in alkaline solution at 330 ℃[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 205
[3] (张志明, 彭青娇, 王俭秋等. 核用锻造态316L不锈钢在330 ℃碱溶液中应力腐蚀开裂行为研究[J]. 中国腐蚀与防护学报, 2015, 35: 205)
[4] Fang Y R, Fu C Y.Corrosion and corrosion inhibition of 304 stainless steel in acidic FeCl3 solution with applied inhibitor K2Cr2O7 and ultrasonic vibration[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 305
[4] (方玉荣, 付朝阳. 酸性FeCl3溶液中304不锈钢的超声腐蚀和缓蚀行为[J]. 中国腐蚀与防护学报, 2015, 35: 305)
[5] Zhou B S.Corrosion and Protection of Metal in Industrial Cooling Water System [M]. Beijing: Chemical Industry Press, 1993: 25
[5] (周本省. 工业冷却水系统中金属的腐蚀与防护 [M]. 北京: 化学工业出版社, 1993: 25)
[6] Liu D X.Corrosion and Protection of Material [M]. Xi'an: Northwestern Polytechnical University Press, 2006: 119
[6] (刘道新. 材料的腐蚀与防护 [M]. 西安: 西北工业大学出版社, 2006: 119)
[7] Ai Y J, Du N, Zhao Q, et al.Effect of gravity on pitting behavior of 304 stainless steel[J]. Corros. Prot., 2014, 35: 1182
[7] (艾莹珺, 杜楠, 赵晴等. 重力对304不锈钢点蚀行为的影响[J]. 腐蚀与防护, 2014, 35: 1182)
[8] Li H B, Jiang Z H, Yang Y, et al.Pitting corrosion and crevice corrosion behaviors of high nitrogen austenitic stainless steels[J]. Int. J. Miner. Metall. Mater., 2009, 16: 517
[9] Pujar M G, Anita T, Shaikh H, et al.Use of electrochemical noise (EN) technique to study the effect of sulfate and chloride ions on passivation and pitting corrosion behavior of 316 stainless steel[J]. J. Mater. Eng. Perform., 2007, 16: 494
[10] Pardo A, Otero E, Merino M C, et al.Influence of pH and chloride concentration on the pitting and crevice corrosion behavior of high-alloy stainless steels[J]. Corrosion, 2000, 56: 411
[11] Ye C, Du N, Tian W M, et al.Effect of pH on pitting corrosion process of 304 stainless steel in 3.5%NaCl solution[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 38
[11] (叶超, 杜楠, 田文明等. pH值对304不锈钢在3.5%NaCl溶液中点蚀过程的影响[J]. 中国腐蚀与防护学报, 2015, 35: 38)
[12] Wu W W, Jiang Y M, Liao J X, et al.Electrochemcial measurement of critical pitting temperature of 0Cr25Ni7Mo4, 316 and 304 stainless steels in 3.5%NaCl solution[J]. Corros. Sci. Prot. Technol., 2006, 18: 285
[12] (吴玮巍, 蒋益明, 廖家兴等. 0Cr25Ni7Mo4、316与304不锈钢临界点蚀温度研究[J]. 腐蚀科学与防护技术, 2006, 18: 285)
[13] Steensland O.Contribution to the discussion on pitting corrosion of stainless steel[J]. Anti Corros. Methods Mater., 1968, 15: 8
[14] Ernst P, Newman R C.Pit growth studies in stainless steel foils: II. Effect of temperature, chloride concentration and sulphate addition[J]. Corros. Sci., 2002, 44: 943
[15] Liang C H, Gao Y.Influence of sensibilization heat treatment on corrosion resistance of 304 stainless steel[J]. Chem. Eng. Mach., 1995, 22: 87
[15] (梁成浩, 高扬. 304不锈钢敏化热处理对耐蚀性的影响[J]. 化工机械, 1995, 22: 87)
[16] Qu Y M, Huang F, Liu J, et al.Pitting electrochemical behaviors of different microstructure X80 steel [A]. Proceedings of the Fifth National Conference on Corrosion[C]. Beijing: Chinese Society for Corrosion and Protection, 2009: 1
[16] (曲炎淼, 黄峰, 刘静等. 不同组织X80钢点蚀电化学行为研究 [A]. 第五届全国腐蚀大会论文集[C]. 北京: 中国腐蚀与防护学会, 2009: 1)
[17] Tang Y M, Zuo Y, Zhao H.The current fluctuations and accumulated pitting damage of mild steel in NaNO2-NaCl solution[J]. Appl. Surf. Sci., 2005, 243: 82
[18] Gong X Z.The behavior of metastable pitting of stainless steel and the relation between metastable pitting and stable pitting [D]. Beijing: Beijing University of Chemical Technology, 2002
[18] (龚小芝. 不锈钢亚稳态孔蚀行为及其与稳态孔蚀的关系 [D]. 北京: 北京化工大学, 2002)
[19] Sun Y W, Chen J, Piao N, et al.The effect of plasma nitriding on the corrosion resistance of X80 pipeline steel in alkaline soil simulation solution[J]. Surf. Technol., 2015, 44(2): 93
[19] (孙彦伟, 陈吉, 朴楠等. 离子渗氮对X80管线钢在碱性土壤模拟溶液中腐蚀行为的影响[J]. 表面技术, 2015, 44(2): 93)
[20] Deng B, Jiang Y M, Hao Y W, et al.The synergetic effect of chloride and fluoride on the critical pitting temperature of 316 stainless steel[J]. J. Chin. Soc. Corros. Prot., 2008, 28: 30
[20] (邓博, 蒋益明, 郝允卫等. F-和Cl-对316不锈钢临界点蚀温度的协同作用[J]. 中国腐蚀与防护学报, 2008, 28: 30)
[21] Ryan M P, William D E, Chater R J, et al.Why stainless steel corrodes[J]. Nature, 2002, 415: 770
[22] Ernst P, Laycock N J, Moayed M H, et al.The mechanism of lacy cover formation in pitting[J]. Corros. Sci., 1997, 39: 1133
[1] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[2] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[3] WANG Lei, DONG Junhua, HAN Da, LIANG Jiankun, LI Quan, KE Wei. Phenonmenon of Cu Segregation in Cu-containing steel During Soaking at 1150 ℃[J]. 中国腐蚀与防护学报, 2020, 40(6): 545-552.
[4] LIU Xiao, WANG Hai, ZHU Zhongliang, LI Ruitao, CHEN Zhenyu, FANG Xudong, XU Fanghong, ZHANG Naiqiang. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[5] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[6] WANG Haiwei, CHANG Sen, LUAN Xin'gang, SONG Xuemei, WANG Zhen, LI Yanzhang, CHEN Jianli, ZHANG Jirong, HAN Ming, QIU Dangui. Preparation and Properties of Ceramics Composed of Nano-Al2O3 and Polysiloxane-polyborosilicate-TiB2 Modified Polysilborazane as High Temperature Adhesive for SiC Based Ceramics[J]. 中国腐蚀与防护学报, 2020, 40(4): 367-372.
[7] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[8] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[9] ZHENG Yanxin, LIU Ying, SONG Qingsong, ZHENG Feng, JIA Yuchuan, HAN Peide. High-temperature Oxidation Behavior and Wear Resistance of Copper-based Composites with Reinforcers of C, ZrSiO4 and Fe[J]. 中国腐蚀与防护学报, 2020, 40(2): 191-198.
[10] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[11] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[12] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[13] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[14] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[15] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
No Suggested Reading articles found!