Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (2): 117-125    DOI: 10.11902/1005.4537.2016.003
Orginal Article Current Issue | Archive | Adv Search |
Corrosion Behavior of Joints of Mg-alloy AZ31 Fabricated by Friction Stir Welding
Ziyang ZHANG,Shanlin WANG(),Hengyu ZHANG,Liming KE
National Defence Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
Download:  HTML  PDF(9336KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Weld joints of Mg-alloy AZ31 were prepared by friction stir welding, and then their corrosion behavior was assessed in NaCl solution. The results show that the free corrosion potential of the friction stir weld joint of Mg-alloy AZ31 is like that of the base metal; however, the corrosion current density of the base metal was 0.45 mAcm-2, while it was 1.63 mAcm-2 for the joint. Moreover, the corrosion resistance in weld nugget zone was the worst because of the effect of the grain size and the distribution of β phase, and the corrosion initialed in this region. In the initial corrosion stage, the corrosion resistance of the base metal was superior to that of the weld joint, but later the base metal exhibited faster corrosion rate rather than the weld joint, which may be ascribed to the occurrence of passivation of the weld joint.

Key words:  AZ31 magnesium alloy      friction stir welding      corrosion behavior      corrosion rate     
Received:  05 January 2016     
Fund: Supported by National Natural Science Foundation of China (51461031), State Key Laboratory of New Metal Materials (2013-Z05) and National Key Laboratory of Light Alloy Processing Science and Technology (gf201501005)

Cite this article: 

Ziyang ZHANG,Shanlin WANG,Hengyu ZHANG,Liming KE. Corrosion Behavior of Joints of Mg-alloy AZ31 Fabricated by Friction Stir Welding. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 117-125.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.003     OR     https://www.jcscp.org/EN/Y2017/V37/I2/117

Fig.1  Appearance of welding head
Fig.2  Cross-sectional microstructures of FSW joint of AZ31 magnesium alloy: (a) parent material area, (b) heat affected zone, (c) thermal mechanical affected zone, (d) weld zone
Fig.3  Variations of corrosion rate of FSW joint of AZ31 magnesium alloy in NaCl solutions with immersion time
Fig.4  Corrosion morphologies of welded joint after immersion in 1.5% (a), 3.5% (b), 5.5% (c) and 7.5% (d) NaCl solutions for 10 min
Fig.5  Corrosion morphologies of welded joint after immersion in 1.5% (a), 3.5% (b), 5.5% (c) and 7.5% (d) NaCl solutions for 1 h
Fig.6  Corrosion morphologies of welded joint after immersion in 1.5% (a), 3.5% (b), 5.5% (c) and 7.5% (d) NaCl solutions for 24 h
Fig.7  Corrosion morphologies of welded joint after immersion in 1.5% (a), 3.5% (b), 5.5% (c) and 7.5% (d) NaCl solutions for 96 h
Fig.8  SEM images (a, b) and EDS analysis results (c, d) of sediments formed on the surface of the joint after immersion in 3.5%NaCl solution for 24 h (a, c) and 96 (b, d)
Fig.9  Corrosion morphologies of the cross section of the joint after immersion in 3.5%NaCl solution for 3 min (a), 10 min (b), 1 h (c) and 96 h (d)
Fig.10  Corrosion morphologies of the cross section of the joint after immersion in 3.5%NaCl solution for 1 h: (a) parent material area, (b) weld zone, (c) heat affected zone, (d) thermal mechanical affected zone
Fig.11  XRD patterns of base material zone (a) and FSW seam area (b) of AZ31 magnesium alloy
Fig.12  Dynamic potential scanning Tafel polarizationcurves of FSW seam area
[1] Tong J G, Ren X P.Progress in friction stir welding of magnesium alloys[J]. Light Alloy Fabric. Technol., 2008, 36(7): 5
[1] (佟建国, 任学平. 镁合金搅拌摩擦焊接技术的研究进展[J]. 轻合金加工技术, 2008, 36(7): 5)
[2] Zhang Y J, Ding C G, Quan G F, et al.Microstructure and impact properties of AZ31 magnesium alloy FSW joint[J]. Hot Work. Technol., 2009, 38(3): 106
[2] (张彦军, 丁成钢, 权高峰等. AZ31镁合金搅拌摩擦焊接头组织和冲击性能分析[J]. 热加工工艺, 2009, 38(3): 106)
[3] Kannan M B, Dietzel W, Zeng R, et al. A study on the SCC susceptibility of friction stir welded AZ31 Mg sheet [J]. Mater. Sci. Eng., 2007, A460/461: 243
[4] Zeng R C, Chen J, Dietzel W, et al.Corrosion of friction stir welded magnesium alloy AM50[J]. Corros. Sci., 2009, 51: 1738
[5] Li X K, Zhang Z M, Zhao Y L.Research and future development of wrought magnesium alloy[J]. Hot Work. Technol., 2011, 40(24): 54
[5] (李新凯, 张志民, 赵亚丽. 变形镁合金的研究现状及前景[J]. 热加工工艺, 2011, 40(24): 54)
[6] Ding W J.Science and Technology of Magnesium Alloys [M]. Beijing: Science Press, 2007
[6] (丁文江. 镁合金科学与技术 [M]. 北京: 科学出版社, 2007)
[7] Aghion E, Bronfin B, Eliezer D.The role of the magnesium industry in protecting the environment[J]. J. Mater. Proc. Technol., 2001, 117: 381
[8] Huo H W, Li Y, Wang H N, et al.Corrosion and protection of magnesium alloys[J]. Mater. Rev., 2001, 15(7): 25
[8] (霍宏伟, 李瑛, 王赫男等. 镁合金的腐蚀与防护[J]. 材料导报, 2001, 15(7): 25)
[9] Yang S M, Liu D D.Research status and Prospect of friction stir welding of magnesium alloys[J]. J. Rare Met., 2014(5): 896
[9] (杨素媛, 刘冬冬. 镁合金搅拌摩擦焊的研究现状与展望[J]. 稀有金属, 2014(5): 896)
[10] Zhao D S, Ma Z B, Luan G H.Present situation and development trend of friction stir welding technology[J]. Weld. Join., 2013, (12): 16
[10] (赵东升, 马正斌, 栾国红. 搅拌摩擦焊技术发展现状与趋势[J]. 焊接, 2013, (12): 16)
[11] Luo H T.Dynamic characteristic analysis and optimization design of heavy load friction stir welding robot [D]. Beijing: University of Chinese Academy of Sciences, 2013
[11] (骆海涛. 重载强扰动搅拌摩擦焊机器人动态特性分析与优化设计 [D]. 北京: 中国科学院大学, 2013)
[12] Wang L, Xie F, Zhang S.Effect of friction stir welding on microstructure and hardness of 5A02 aluminum alloy[J]. Light Alloy Process. Technol., 2016, 44(3): 60
[12] (王丽, 谢非, 张书. 搅拌摩擦焊对5A02铝合金微观组织及硬度的影响[J]. 轻合金加工技术, 2016, 44(3): 60)
[13] Xu R Z.Effect of welding parameters on friction stir welding of mg Al dissimilar materials[J]. Light Alloy Process. Technol., 2014, 42(7): 56
[13] (徐荣政. 焊接工艺参数对镁铝异种材料搅拌摩擦焊的影响[J]. 轻合金加工技术, 2014, 42(7): 56)
[14] Chen X J.The research on friction stir welding process of magnesium alloy and corrosion protection of the weld [D]. Changchun: Jilin University, 2009
[14] (陈显君. 镁合金搅拌摩擦焊工艺及焊缝腐蚀防护研究 [D]. 长春: 吉林大学, 2009)
[15] Song G L, Atrens A, Dargusch M.Influence of microstructure on the corrosion of diecast AZ91D[J]. Corros. Sci., 1998, 41: 249
[1] JIA Shichao, GAO Jiaqi, GUO Hao, WANG Chao, CHEN Yangyang, LI Qi, TIAN Yimei. Influence of Water Quality on Corrosion of Cast Iron Pipe in Reclaimed Water[J]. 中国腐蚀与防护学报, 2020, 40(6): 569-576.
[2] LI Lin, CHEN Yiqing, GAO Peng, AI Fangfang, ZHONG Bin, SAN Hongyu, YANG Ying. Corrosion Resistance of Various Bridge Steels in Deicing Salt Environments[J]. 中国腐蚀与防护学报, 2020, 40(5): 448-454.
[3] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[4] HU Lulu, ZHAO Xuyang, LIU Pan, WU Fangfang, ZHANG Jianqing, LENG Wenhua, CAO Fahe. Effect of AC Electric Field and Thickness of Electrolyte Film on Corrosion Behavior of A6082-T6 Al Alloy[J]. 中国腐蚀与防护学报, 2020, 40(4): 342-350.
[5] WANG Xinhua, YANG Yong, CHEN Yingchun, WEI Kailing. Effect of Alternating Current on Corrosion Behavior of X100 Pipeline Steel in a Simulated Solution for Soil Medium at Korla District[J]. 中国腐蚀与防护学报, 2020, 40(3): 259-265.
[6] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[7] SHEN Shuyang, WANG Dongsheng, SUN Shibin, YANG Ti, ZHAO Qianjing, WANG Xin, ZHANG Yafei, CHANG Xueting. Corrosion Behavior in Artificial Seawater of Subzero Treated EH40 Marine Steel Suitable for ExtremelyCold Environments[J]. 中国腐蚀与防护学报, 2020, 40(2): 151-158.
[8] SU Xiaohong,HU Huie,KONG Xiaodong. Corrosion Behavior of W Particles/Zr41.2Ti13.8Cu12.5Ni10Be22.5 Metallic Glass Matrix Composite in 3%NaCl Solution[J]. 中国腐蚀与防护学报, 2020, 40(1): 70-74.
[9] ZHAO Guoxian,HUANG Jing,XUE Yan. Corrosion Behavior of Materials Used for Surface Gathering and Transportation Pipeline in an Oilfield[J]. 中国腐蚀与防护学报, 2019, 39(6): 557-562.
[10] WANG Qinying,PEI Rui,XI Yuchen. Erosion-corrosion Behavior of Laser-clad Ni-based Alloy Coating on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 458-462.
[11] GUO Tieming,ZHANG Yanwen,QIN Junshan,SONG Zhitao,DONG Jianjun. Corrosion Behavior of Q345q Bridge Steel in Three Simulated Atmospheres[J]. 中国腐蚀与防护学报, 2019, 39(4): 319-330.
[12] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[13] Li LIU,Sirong YU. Effect of Gd Addition on Corrosion Behavior of AM60 Magnesium Alloy[J]. 中国腐蚀与防护学报, 2019, 39(2): 185-191.
[14] Bobo HUANG,Ping LIU,Xinkuan LIU,Pinxiu MEI,Xiaohong CHEN. Seawater Corrosion Behavior of New 70-1 Tin Brass Net in Waters off Dachen Island for Two Years[J]. 中国腐蚀与防护学报, 2018, 38(6): 594-600.
[15] Yang LI, Chengyuan LI, Xu CHEN, Jiaxing YANG, Xintong WANG, Nanxi MING, Zhenze HAN. Gray Relationship Analysis on Corrosion Behavior of Super 13Cr Stainless Steel in Environments of Marine Oil and Gas Field[J]. 中国腐蚀与防护学报, 2018, 38(5): 471-477.
No Suggested Reading articles found!