Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (1): 9-15    DOI: 10.11902/1005.4537.2016.088
Current Issue | Archive | Adv Search |
Crack Growth Rate of Stress Corrosion Cracking of Inconel 625 in High Temperature Steam
Naiqiang ZHANG1,Guoqiang YUE1,Fabin LV1,Qi CAO1,Mengyuan LI2,Hong XU1()
1 Key Laboratory of Condition Monitoring and Control for Power Plant Equipment of Ministry of Education, North China Electric Power University, Beijing 102206, China
2 State Grid Energy Conservation Service CO. LTD., Beijing 102206, China
Download:  HTML  PDF(1038KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Stress corrosion crack growth rate (CGR) tests of nickel-based alloy Inconel 625, as a candidate material for 700 ℃ ultra-supercritical steam turbine, has been completed at 700~750 ℃ in environments of alternating air and water vapor, as well as in steam with 0~8000 μg/L dissolved oxygen. The applied load is constant stress with intensity factor (K) and the crack growth rate is detected online by measuring the direct current potential drop (DCPD). Results show that the CGR in water vapor is greater than in air and which increases with increasing temperature and dissolved oxygen content. The mechanisms concerning the influence of temperature, medium environment and dissolved oxygen content on stress corrosion cracking are discussed.

Key words:  Nickel-based alloy      stress corrosion cracking      crack growth rate      dissolved oxygen     
Received:  29 June 2016     
Fund: Supported by National Natural Science Foundation of China (51471069)

Cite this article: 

Naiqiang ZHANG,Guoqiang YUE,Fabin LV,Qi CAO,Mengyuan LI,Hong XU. Crack Growth Rate of Stress Corrosion Cracking of Inconel 625 in High Temperature Steam. Journal of Chinese Society for Corrosion and protection, 2017, 37(1): 9-15.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.088     OR     https://www.jcscp.org/EN/Y2017/V37/I1/9

Fig.1  Dimensions of 0.5 T-CT specimen
Fig.2  Block diagram of stress corrosion crack growth test system in high temperature steam
Test step Temperature / ℃ Medium environment Loading method CGR / mms-1 Duration / h
S1 700 Air Constant K 3.39×10-8 146
S2 700 Water vapor Constant K 5.43×10-8 161
S3 750 Air Constant K 4.66×10-7 145
S4 750 Water vapor Constant K 5.06×10-7 148
S5 725 Air Constant K 1.48×10-7 156
S6 725 Water vapor Constant K 2.08×10-7 172
Table 1  Test conditions and results of Inconel 625 specimens in air and high temperature steam
Fig.3  Variation of SCC crack length of Inconel 625 with time in air and water vapor at 700~750 ℃
Fig.4  Fracture surfaces of Inconel 625 specimens after the crack growth rate test: (a) transition area from transgranular pre-crack SCC to intergranular SCC, (b) typical intergranular SCC area, (c) magnifying image of intergranular SCC area, (d) local transgranular SCC in the intergranular SCC area
Fig.5  Overall appearance of the crack of Inconel 625 specimen
Test step DO / μgL-1 Loading method CGR / mms-1 Duration / h
S1 8000 Constant K 2.24×10-7 118
S2 <10 Constant K 8.73×10-8 130
S3 2000 Constant K 1.14×10-7 132
S4 4000 Constant K 1.29×10-7 129
S5 6000 Constant K 1.50×10-7 107
Table 2  SCC test conditions and results of Inconel 625 specimens at 725 ℃ in water vapor containing different contents of dissolved oxygen
Fig.6  Variation of SCC crack length of Inconel 625 alloy with dissolved oxygen content in water vapor at 725 ℃
Fig.7  Arrhenius plot of crack growth rate and temperature
Temperature / ℃ Air Water vapor Times
CGR / mms-1
700 3.39×10-8 5.43×10-8 1.602
725 1.48×10-7 2.08×10-7 1.405
750 4.66×10-7 5.06×10-7 1.086
Table 3  Comparison of SCC crack growth rate in air and water vapor
Fig.8  Variation of crack propagation rate of Inconel 625 alloy with dissolved oxygen content at 725 ℃
[1] Wang T J, Fan H, Zhang B Q, et al.Nickel-based superalloy for key components of ultra-supercritical steam turbine operating above 700 ℃[J]. Dongfang Turbine, 2012, (2): 46
[1] (王天剑, 范华, 张邦强等. 700 ℃超超临界汽轮机关键部件用镍基高温合金选材[J]. 东方汽轮机, 2012, (2): 46)
[2] Takeda Y, Kanaya M, Yamamoto S, et al.Oxidation and cracking behavior of nickel base super-alloys under bending stress in advanced steam condition beyond 700 ℃ [A]. Challenges of Power Engineering and Environment[M]. Berlin Heidelberg: Springer, 2007: 1031
[3] Andresen P L, Emigh P W, Young L M, et al.Stress corrosion crack growth rate behavior of Ni alloys 182 and 600 in high temperature water [A]. CORROSION 2002[C]. Denver: NACE International, 2002
[4] Lu Z P, Shoji T, Takeda Y, et al.Transient and steady state crack growth kinetics for stress corrosion cracking of a cold worked 316L stainless steel in oxygenated pure water at different temperatures[J]. Corros. Sci., 2008, 50: 561
[5] Peng Q J, Kwon J, Shoji T.Development of a fundamental crack tip strain rate equation and its application to quantitative prediction of stress corrosion cracking of stainless steels in high temperature oxygenated water[J]. J. Nucl. Mater., 2004, 324: 52
[6] Xue H, Li Z J, Lu Z P, et al.The effect of a single tensile overload on stress corrosion cracking growth of stainless steel in a light water reactor environment[J]. Nucl. Eng. Des., 2011, 241: 731
[7] Lu Z P, Shoji T, Takeda Y, et al.The dependency of the crack growth rate on the loading pattern and temperature in stress corrosion cracking of strain-hardened 316L stainless steels in a simulated BWR environment[J]. Corros. Sci., 2008, 50: 698
[8] Lu Z P, Shoji T, Takeda Y, et al.Effects of loading mode and water chemistry on stress corrosion crack growth behavior of 316L HAZ and weld metal materials in high temperature pure water[J]. Corros. Sci., 2008, 50: 625
[9] Lu Y H, Peng Q J, Sato T, et al.An ATEM study of oxidation behavior of SCC crack tips in 304L stainless steel in high temperature oxygenated water[J]. J. Nucl. Mater., 2005, 347: 52
[10] Peng Q J, Shoji T, Yamauchi H, et al.Intergranular environmentally assisted cracking of Alloy 182 weld metal in simulated normal water chemistry of boiling water reactor[J]. Corros. Sci., 2007, 49: 2767
[11] Seifert H P, Ritter S, Shoji T, et al.Environmentally-assisted cracking behaviour in the transition region of an Alloy 182/SA 508 C1. 2 dissimilar metal weld joint in simulated boiling water reactor normal water chemistry environment[J]. J. Nucl. Mater., 2008, 378: 197
[12] Dan T, Shoji T, Lu Z P, et al.Effects of hydrogen on the anodic behavior of Alloy 690 at 600 ℃[J]. Corros. Sci., 2010, 52: 1228
[13] Han E-H.Research trends on micro and nano-scale materials degradation in nuclear power plant[J]. Acta Metall. Sin., 2011, 47: 769
[13] (韩恩厚. 核电站关键材料在微纳米尺度上的环境损伤行为研究-进展与趋势[J]. 金属学报, 2011, 47: 769)
[14] Lu Z, Shoji T, Takeda Y, et al.Effects of loading mode and temperature on stress corrosion crack growth rates of a cold-worked type 316L stainless steel in oxygenated pure water[J]. Corrosion, 2007, 63: 1021
[15] Arioka K, Yamada T, Terachi T, et al.Cold work and temperature dependence of stress corrosion crack growth of austenitic stainless steels in hydrogenated and oxygenated high-temperature water[J]. Corrosion, 2007, 63: 1114
[16] Zhang L T, Wang J Q.Effect of dissolved oxygen content on stress corrosion cracking of a cold worked 316L stainless steel in simulated pressurized water reactor primary water environment[J]. J. Nucl. Mater., 2014, 446: 15
[17] Andresen P L.Effects of temperature on crack growth rate in sensitized type 304 stainless steel and alloy 600[J]. Corrosion, 1993, 49: 714
[18] Vermilyea D A.A theory for the propagation of stress corrosion cracks in metals[J]. J. Electrochem. Soc., 1972, 119: 405
[19] Turnbull A.Modelling of environment assisted cracking[J]. Corros. Sci., 1993, 34: 921
[20] Ford F P.Quantitative prediction of environmentally assisted cracking[J]. Corrosion, 1996, 52: 375
[21] Kitaguchi H S, Li H Y, Evans H E, et al.Oxidation ahead of a crack tip in an advanced Ni-based superalloy[J]. Acta Mater., 2013, 61: 1968
[22] Lu Y H, Peng Q J, Sato T, et al.An ATEM study of oxidation behavior of SCC crack tips in 304L stainless steel in hightemperature oxygenated water[J]. J. Nucl. Mater., 2005, 347: 52
[23] Betova I, Bojinov M, Kinnunen P, et al.Influence of Zn on the oxide layer on AISI 316L (NG) stainless steel in simulated pressurised water reactor coolant[J]. Electrochim. Acta, 2009, 54: 1056
[24] Chu W Y, Qiao L J, Li J X, et al.Hydrogen Embrittlement and Stress Corrosion Cracking [M]. Beijing: Science Press, 2013: 446
[24] (褚武扬, 乔利杰, 李金许等. 氢脆和应力腐蚀 [M]. 北京: 科学出版社, 2013: 446)
[1] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] SUN Haijing, QIN Ming, LI Lin. Performance of Al-Zn-In-Mg-Ti Sacrificial Anode in Simulated Low Dissolved Oxygen Deep Water Environment[J]. 中国腐蚀与防护学报, 2020, 40(6): 508-516.
[3] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[4] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[5] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[6] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[7] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[8] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[9] Yue QIAO, Zhiping ZHU, Lei YANG, Zhifeng LIU. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures[J]. 中国腐蚀与防护学报, 2018, 38(5): 487-494.
[10] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[11] Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution[J]. 中国腐蚀与防护学报, 2017, 37(6): 526-532.
[12] Kaihe ZHOU,Yunhui FANG,Xiaozhong XU,Jiong JIANG,Xiaoping GUO,Shuan LIU,Wenru ZHEN,Jibin PU,Liping WANG. Effect of Environmental Factors on Corrosion Behavior of Zn in Saturated Zn(OH)2 Solution II—Temperature and Dissolved Oxygen[J]. 中国腐蚀与防护学报, 2016, 36(6): 529-534.
[13] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[14] Yueling GUO,En-Hou HAN,Jianqiu WANG. Effect of Post-forging Heat Treatment on Stress Corrosion Cracking of Nuclear Grade 316LN Stainless Steel in Boiling MgCl2 Solution[J]. 中国腐蚀与防护学报, 2015, 35(6): 488-495.
[15] Jiangwei WANG,Jie ZHANG,Shougang CHEN,Jizhou DUAN,Baorong HOU. Influence of Calcareous Deposit on Corrosion Behavior of Q235 Carbon Steel in f/2 Culture Medium with Amphora[J]. 中国腐蚀与防护学报, 2015, 35(6): 535-542.
No Suggested Reading articles found!