Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (1): 74-80    DOI: 10.11902/1005.4537.2016.154
Current Issue | Archive | Adv Search |
Rapid Identification of Liquid Accelerant in Fire Scene Environment
Dongbai XIE1(),Guo SHAN2
1 Key Laboratory of Impression Evidence Examination and Identification Technology, National Police University of China, Shenyang 110854, China
2 Department of Forensic Science, Xinjiang Police College, Urumqi 830011, China
Download:  HTML  PDF(1233KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Oxidation tests of Cu and Q235 steel were conducted in air alone and a combustion atmosphere of kerosene-air mixture at 600, 700 and 800 ℃ respectively, the later aims to simulate the fire scene environment with the presence of fuel accelerant. Cracking and spallation of the formed oxide scales were observed by using optical microscopy. The results revealed that the existence of kerosene accelerated the oxidation of Cu and Q235, and changed the surface morphologies of the oxide scales. With the increasing temperature and time, serious spallation of the oxide scales was observed. Especially, due to the spallation of the oxide scale formed on Cu, the mass loss of Cu did occurr. Based on the features of the oxide scales formed on Cu and Q235, it is expected to offer complementary insight on determining the fire characteristics, such as exposure temperature, time period and whether liquid accelerant is involved.

Key words:  fire scene      accelerant      identification      metallic material      high temperature oxidation     
Received:  10 September 2016     

Cite this article: 

Dongbai XIE,Guo SHAN. Rapid Identification of Liquid Accelerant in Fire Scene Environment. Journal of Chinese Society for Corrosion and protection, 2017, 37(1): 74-80.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.154     OR     https://www.jcscp.org/EN/Y2017/V37/I1/74

Fig.1  Tube furnace setup for oxidation experiment in air and simulated kerosene combustion environments
Material C Mn Si S P Fe Cu Ni Si Others
Q235 0.15 0.30 0.30 0.045 0.045 Bal. --- --- --- ---
Cu --- --- --- --- 0.0007 0.0008 99.96 0.0002 0.0004 0.0379
Table 1  Chemical compositions of Q235 steel and Cu(mass fraction / %)
Fig.2  Surface morphologies of pure Cu after oxidation at 600 ℃ in air (a, c) and combustion (b, d)environments for 30 min (a, b) and 60 min (c, d)
Fig.3  Surface morphologies of pure Cu after oxidation at 700 ℃ in air (a, c) and combustion (b, d)environment for 30 min (a, b) and 60 min (c, d)
Fig.4  Surface morphologies of pure Cu after oxidation in air (a) and combustion (b) environment for 60 min at 800 ℃
Fig.5  Surface morphologies of Q235 steel after oxidation at 600 ℃ in air (a, c) and combustion (b, d) environments for 30 min (a, b) and 60 min (c, d)
Fig.6  Surface morphologies of Q235 steel after oxidation at 700 ℃ in air (a, c) and combustion (b, d) environments for 30 min (a, b) and 60 min (c, d)
Fig.7  Surface morphologies of Q235 steel after oxidation at 800 ℃ in air (a, c) and combustion (b, d) environments for 30 min (a, b) and 60 min (c, d)
[1] Xu L, Zhang H P, Yang Y, et al.Study on fire design in performance-based design[J]. Eng. Sci., 2004, 6(1): 64
[1] (徐亮, 张和平, 杨昀等. 性能化防火设计中火灾场景设置初步研究[J]. 中国工程科学, 2004, 6(1): 64)
[2] Stauffer E, Byron D.Alternative fuels in fire debris analysis: Biodiesel basics[J]. J. Forensic Sci., 2007, 52: 371
[3] Benajes J, Molina S, Martín J, et al.Effect of advancing the closing angle of the intake valves on diffusion-controlled combustion in a HD diesel engine[J]. Appl. Therm. Eng., 2009, 29: 1947
[4] Huang Y, Yang V.Dynamics and stability of lean-premixed swirl-stabilized combustion[J]. Prog. Energy Combust. Sci., 2009, 35: 293
[5] Xie D B, Shan G, Deng S, et al.Investigations on oxidation and microstructure evolution of pure Cu in simulated air-kerosene combustion atmospheres[J]. Fire Mater., 2016, doi: 10.1002/fam.2395
[6] Li H, Luo C H.The oxidation of copper at 200~900 ℃[J]. Acta Metall. Sin., 1965, 8: 311
[6] (李薰, 骆继动. 铜在200~900 ℃的氧化[J]. 金属学报, 1965, 8: 311)
[7] Huang W D, Zhang Y Z.Microstructure analysis of Cu-Y alloy at high temperature[J]. Chin. Rare Earths, 1991, 12(6): 63
[7] (黄文德, 张玉柱. Cu-Y合金高温氧化膜组织结构分析[J]. 稀土, 1991, 12(6): 63)
[8] Sheasby J S, Boggs W E, Turkdogan E T.Scale growth on steels at 1200 ℃: Rationale of rate and morphology[J]. Met. Sci., 1984, 18: 127
[9] Iordanova L, Surtchev M, Forcey K S, et al.High-temperature surface oxidation of low-carbon rimming steel[J]. Surf. Interface Anal., 2000, 30: 158
[10] Evans H E. Cracking and spalling of protective oxide layers [J]. Mater. Sci. Eng., 1989, A120/121: 139
[11] Evans H E, Lobb R C.Conditions for the initiation of oxide-scale cracking and spallation[J]. Corros. Sci., 1984, 24: 209
[12] Li M S.High Temperature Oxidation of Metals [M]. Beijing: Metallurgical Industry Press, 2001: 45
[12] (李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 45)
[13] Dehaan J D, Bonarius K.Pyrolysis products of structure fires[J]. J. Forensic Sci. Soc., 1988, 28: 299
[14] Yoon J K, Thakre P, Yang V.Modeling of RDX/GAP/BTTN pseudo-propellant combustion[J]. Combust. Flame, 2006, 145: 300
[15] Fryburg G C, Miller R A, Kohl F J, et al.Volatile products in the corrosion of Cr, Mo, Ti and four superalloys exposed to O2 containing H2O and gaseous NaCl[J]. J. Electrochem. Soc., 1977, 124: 1738
[16] Cheng X W, Zheng Y J, Monaghan B J, et al.Breakaway oxidation behaviour of ferritic stainless steels at 1150 ℃ in humid air[J]. Corros. Sci., 2016, 108: 11
[17] Lv J L, Liang T X, Luo H Y.Influence of pre-deformation, sensitization and oxidation in high temperature water on corrosion resistance of AISI 304 stainless steel[J]. Nucl. Eng. Des., 2016, 309: 1
[1] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[2] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[3] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[4] Junjie XIA,Hongzhi NIU,Min LIU,Huazhen CAO,Guoqu ZHENG,Liankui WU. Enhancement of High Temperature Oxidation Resistance of Ti48Al5Nb Alloy via Anodic Anodization in NH4F Containing Ethylene Glycol[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[5] Dongbai XIE,Youyu ZHOU,Jintao LU,Wen WANG,Shenglong ZHU,Fuhui WANG. Effect of Al/Si Content on Corrosion of Ni-based Alloys in Supercritical Water[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[6] Ling WANG,Junhuai XIANG,Honghua ZHANG,Songlin QIN. High Temperature Oxidation Behavior of Three Co-20Re-xCr Alloys in 3.04×10-5 Pa Oxygen at 1000 and 1100 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[7] Yan SUN, Jiajia WU, Dun ZHANG, Shiqiang CHEN. Investigation of Microorganisms in Corrosion Product Scales on Q235 Carbon Steel Exposed to Tidal- and Full Immersion Zone at Qindao- and Sanya-sea Waters[J]. 中国腐蚀与防护学报, 2018, 38(4): 333-342.
[8] Dongbai XIE, Youyu ZHOU, Jintao LU, Wen WANG, Shenglong ZHU, Fuhui WANG. Effect of Cr Content on Oxidation of Ni-based Alloy in Supercritical Water[J]. 中国腐蚀与防护学报, 2018, 38(4): 358-364.
[9] Yue LI, Jian WANG, Yong ZHANG, Jingang BAI, Yadi HU, Yongfeng QIAO, Caili ZHANG, Peide HAN. Analysis of Initial Oxidation Process of 2205 Duplex Stainless Steel in Closed Container at High Temperature[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[10] Zhan ZHAO,Jingyang LI,Jianxin DONG,Zhihao YAO,Maicang ZHANG. Oxidation Behavior during High Temperature Homo-genization Treatment of Cast Ni-Fe Based Corrosion Resistant 925 Alloy[J]. 中国腐蚀与防护学报, 2017, 37(1): 1-8.
[11] Tiantian YANG,Jingjun XU,Yuhai QIAN,Meishuan LI. Preparation and Ultra-high Temperature Oxidation Resistance of Micro-laminated ZrC/MoSi2 Coating on Siliconized Graphite[J]. 中国腐蚀与防护学报, 2016, 36(5): 476-482.
[12] Jiapeng HUANG,Bin YANG,Hang WANG. Effect of Multiple Addition of Y, La and Ce on Oxidation Behavior of Ni-10Cr-5Al Alloy at 1000 ℃ in Air[J]. 中国腐蚀与防护学报, 2016, 36(5): 489-496.
[13] Cui LIN,Xiaobin ZHAO,Yifei ZHANG. Research Progress on Cavitation-corrosion ofMetallic Materials[J]. 中国腐蚀与防护学报, 2016, 36(1): 11-19.
[14] YUAN Juntao, WANG Wen, ZHU Shenglong, WANG Fuhui. Oxidation Behavior of Super 304H Steel in Steam at 700~900 ℃[J]. 中国腐蚀与防护学报, 2014, 34(3): 218-224.
[15] YUAN Juntao,WU Ximao,WANG Wen,ZHU Shenglong,WANG Fuhui. Effect of Grain Size on Oxidation of Heat-resistant Steels in High Temperature Water Steam[J]. 中国腐蚀与防护学报, 2013, 33(4): 257-264.
No Suggested Reading articles found!