Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (1): 53-57    DOI: 10.11902/1005.4537.2016.170
Current Issue | Archive | Adv Search |
Corrosion Resistance of Air Plasma Sprayed Thermal Barrier Coating SrZrO3 on Superalloy In718 against CaO-MgO-Al2O3-SiO2 (CMAS)
Shanrong ZHANG1,2,Hongying DONG1,2,Wen MA2,3(),Yichuan YIN2,3,Xinhui LI2,3,Yu BAI2,3,Ruiling JIA2,3
1 School of Chemical Engineering,Inner Mongolia University of Technology, Hohhot 010051, China
2 Inner Mongolia Key Laboratory of Thin Film and Coatings Technology, Inner Mongolia University of Technology, Hohhot 010051, China
3 School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
Download:  HTML  PDF(866KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

SrZrO3 powders were synthesized by solid-state reaction and then spray granulation. The SrZrO3 coating on superalloy In718 was prepared by air plasma spray (APS). The corrosion behavior of the SrZrO3 coated alloy beneath a thin deposit of CMAS (CaO-MgO-Al2O3-SiO2) was examined in air at 1150 and 1250 oC for 1, 4 and 12 h respectively, while the reaction of powder mixture of SrZrO3 and CMAS was investigated paralell. The corrosion products of SrZrO3 powders and the microstructure of SrZrO3 coating after corrosion were characterized by XRD and SEM, respectively. The reaction between the two powders of SrZrO3 and CMAS did not occur at 1150 oC, whereas occurred at 1250 oC for 1 h, which resulted in the formation of corrosion products of ZrSiO4, CaZrO3, SrAl2O4 and t-ZrO2, and then a new phase of m-ZrO2 did additionally appear for 4 h corrosion. The corrosion product of t-ZrO2 was formed on the SrZrO3 coating surface after CMAS attack, and the phase transition from t-ZrO2 to m-ZrO2 occurred as the corrosion time increased, the formation of the corrosion products could suppress the further corrosion of the SrZrO3 coating by CMAS.

Key words:  air plasma spray      thermal barrier coating      CMAS      SrZrO3     
Received:  18 September 2016     
Fund: Supported by National Natural Science Foundation of China (51462026 and 51672136) and the Inner Mongolia Natural Science Foundation (2014MS0509)

Cite this article: 

Shanrong ZHANG,Hongying DONG,Wen MA,Yichuan YIN,Xinhui LI,Yu BAI,Ruiling JIA. Corrosion Resistance of Air Plasma Sprayed Thermal Barrier Coating SrZrO3 on Superalloy In718 against CaO-MgO-Al2O3-SiO2 (CMAS). Journal of Chinese Society for Corrosion and protection, 2017, 37(1): 53-57.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.170     OR     https://www.jcscp.org/EN/Y2017/V37/I1/53

Coating type Arc current / A Spray distance / mm Feeding rage / gmin-1 Plasma gas Ar/H2 / Lmin-1
Bond 500 120 50 30/10
Top 550 110 42 35/12
Table 1  Spray parameters for bond coat and top coat
Fig.1  XRD patterns of spray dried SrZrO3 powder andas-sprayed SrZrO3 coating
Fig.2  XRD patterns of the mixture of SrZrO3 and CMAS powders after heat treatment for 1 h at 1150 and 1250 ℃
Fig.3  XRD patterns of the mixture of SrZrO3 and CMAS powders after heat treatment at 1250 ℃ for 1, 4 and 12 h
Fig.4  Cross-sectional SEM images of SrZrO3 coating after CMAS corrosion for 1 h at 1150 ℃ (a) and 1250 ℃ (b), as well as element mappings of Ca (c), Mg (d), Al (e) and Si (f) in Fig.4b
Fig.5  Cross-sectional SEM images of SrZrO3 coatings after CMAS corrosion at 1250 ℃ for 1 h (a, b), 4 h (c, d) and 12 h (e, f)
Fig.6  EDS analysis of the spherical particles in the corrosion layers in Fig.5b (a), Fig.5d (b) and Fig.5f (c), respectively
Fig.7  Thickness of corrosion layer of SrZrO3 TBCs as a function of time at 1250 ℃
[1] Miller R A.Thermal barrier coatings for aircraft engines: History and directions[J]. J. Therm. Spray Technol.,1997, 6: 35
[2] Meier S M, Gupta D K.The evolution of thermal barrier coatings in gas turbine engine applications[J]. J. Eng. Gas Turbines Power, 1994, 116: 250
[3] Padture N P, Gell M, Jordan E H.Thermal barrier coatings for gas-turbine engine applications[J]. Science, 2002, 296: 280
[4] Mercer C, Faulhaber S, Evans A G, et al.A delamination mechanism for thermal barrier coatings subject to calcium-magnesium-alumino-silicate (CMAS) infiltration[J]. Acta Mater., 2005, 53: 1029
[5] Kr?mer S, Yang J, Levi C G, et al.Thermochemical interaction of thermal barrier coatings with molten CaO-MgO-Al2O3-SiO2 (CMAS)deposits[J]. J. Am. Ceram. Soc., 2006, 89: 3167
[6] Poerschke D L, Levi C G.Effects of cation substitution and temperature on the interaction between thermal barrier oxides and molten CMAS[J]. J. Eur. Ceram. Soc., 2015, 35: 681
[7] Zhou X, Zou B L, He L M, et al.Hot corrosion behaviour of La2(Zr0.7Ce0.3)2O7 thermal barrier coating ceramics exposed to molten calcium magnesium aluminosilicate at different temperatures[J].Corros. Sci., 2015, 100: 566
[8] Guo H B, Gong S K, Xu H B.Progressin thermal barrier coatings for advanced aeroengines[J]. Mater. China, 2009, 28(Z2): 18
[8] (郭洪波, 宫声凯, 徐惠彬. 先进航空发动机热障涂层技术研究进展[J]. 中国材料进展, 2009, 28(Z2): 18)
[9] Goward G W. Progress in coatings for gas turbine airfoils [J]. Surf.Coat. Technol., 1998, 108/109: 73
[10] Ma W, Song F Y, Dong H Y, et al.Thermo physical properties of Y2O3 and Gd2O3 co-doped SrZrO3 thermal barrier coating material[J]. J. Inorg. Mater., 2012, 27: 209
[10] (马文, 宋峰雨, 董红英等. Y2O3与Gd2O3共掺杂SrZrO3热障涂层材料的热物理性能[J]. 无机材料学报, 2012, 27: 209)
[11] Ma W, Mack D E, Vaβen R, et al.Perovskite-type strontium zirconateas a new material for thermal barrier coatings[J]. J. Am. Ceram. Soc., 2008, 91: 2630
[12] Zhao H B, Levi C G, Wadley H N G. Molten silicate interactions with thermal barrier coatings[J]. Sur. Coat. Technol., 2014, 251: 74
[13] Jacobson N S.Thermodynamic properties of some metal oxide-zirconia systems [R]. Cleveland: National Aeronautics and Space Administration, 1989
[14] Schulz U, Saruhan B, Fritscher K, et al.Review on advanced EB-PVD ceramic topcoats for TBC applications[J]. Int. J. Appl. Ceram. Technol., 2004, 1: 302
[15] Garvie R C, Chan S K. Mechanism and thermodynamics of the monoclinic-tetragonal transformations of zirconia [J]. Mater. Sci. Forum, 1988, 34/36: 95
[1] YU Chuntang,YANG Yingfei,BAO Zebin,ZHU Shenglong. Research Progress in Preparation and Development of Excellent Bond Coats for Advanced Thermal Barrier Coatings[J]. 中国腐蚀与防护学报, 2019, 39(5): 395-403.
[2] Lijia YU,Wenping LIANG,Hao LIN,Qiang MIAO,Biaozi HUANG,Shiyu CUI. Evaluation of Hot Corrosion Behavior of Laser As-remelted YSZ Thermal Barrier Coatings at 950 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[3] Xizhong WANG,Jianhao WU,Hui PENG,Hongbo GUO,Shengkai GONG. Hot-gas Corrosion Resistance of La2Ce2O7/8YSZ Duble-ceramic-layered Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[4] Xinhui LI,Wen MA,Yichuan YIN,Bole MA,Yu BAI,Ruiling JIA,Hongying DONG. Optimization of Preparation Process of Solution Precursor Plasma Spraying for SrZrO3 Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2017, 37(1): 41-46.
[5] Lili CAI,Wen MA,Xinhui LI,Yichuan YIN,Bole MA,Yu BAI,Jun WANG,Hongying DONG. Corrosion Resistance of (Gd0.7Sr0.3)ZrO3.35 Coating against CaO-MgO-Al2O3-SiO2 (CMAS)[J]. 中国腐蚀与防护学报, 2017, 37(1): 47-52.
[6] CHEN Chen,GUO Hongbo,GONG Shengkai. Failure Analysis of Thermal Barrier Coating Being Subjected to Lateral Thermal Gradient on Surface[J]. 中国腐蚀与防护学报, 2013, 33(5): 400-406.
[7] ;. RECENT DEVELOPMENT OF PERFORMANCE VALUATION ON THERMAL BARRIER COATINGS[J]. 中国腐蚀与防护学报, 2007, 27(5): 309-314 .
[8] LI yunduan; Shengkai Gong; Huibing Xv. FAILURE MECHANISM OF ONE SIDE COATED THERMAL BARRIER COATING[J]. 中国腐蚀与防护学报, 2006, 26(3): 146-151 .
[9] Changguang Deng; Ziqi Kuang. THE EFFECT OF LANTHANUM BEARING FERROSILICON TOTHE MICROSTRUCTURE AND PERFORMANCES OF TBCs GRADED COATING[J]. 中国腐蚀与防护学报, 2002, 22(3): 176-179 .
[10] Hexing Chen; Zhanpeng Jin; Kesong Zhou. STUDY OF CHARACTERISTICS OF NiCrAlY-ZrO2 INTERFACEIN THERMAL BARRIER COATINGS[J]. 中国腐蚀与防护学报, 2002, 22(2): 95-97 .
[11] Xiaofang Bi; Hongbo Guo; Shengkai Gong; Huibing Xv. INVESTIGATION OF HIGH TEMPERATURE HOT CORROSIONBEHAVIOR OF THERMAL BARRIER COATINGS PREPARED BY EB-PVD[J]. 中国腐蚀与防护学报, 2002, 22(2): 84-87 .
[12] Zhongyuan Zhang; Meiheng Li; Xiaofeng Sun. CYCLIC OXIDATION BEHAVIOR OF THERMAL BARRIERCOATINGS ON SINGLE CRYSTAL SUPERALLOYS[J]. 中国腐蚀与防护学报, 2002, 22(2): 111-114 .
No Suggested Reading articles found!