Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (5): 367-374    DOI: 10.11902/1005.4537.2019.136
Current Issue | Archive | Adv Search |
Application of Microelectrochemical Sensors in Monitoring of Localized Interface pH
ZHU Zejie1,2,ZHANG Qinhao1,LIU Pan1,ZHANG Jianqing1,CAO Fahe1,3()
1. Department of Chemistry, Zhejiang University, Hangzhou 310027, China
2. School of Materials and Chemistry, China Jiliang University, Hangzhou 310018, China
3. School of Materials, Sun Yat-sen University, Guangzhou 510006, China
Download:  HTML  PDF(4025KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Microelectrochemical sensor has been widely applied in various fields involving redox reactions, including experimental research and industrial applications. This paper briefly introduces the recent advances of microelectrochemical pH sensor. The microelectrochemical pH sensor associated with potentiometric mode of different scanning probe microscope is also described for monitoring the local pH distribution of interfaces. Research work of microelectrochemical pH sensor in the measurement of micro-area pH at interfaces by our group is also introduced. Future applications of microelectrochemical pH sensor in corrosion are highlighted.

Key words:  microelectrochemical sensor      pH      interface      corrosion      scanning probe technology     
Received:  29 August 2019     
ZTFLH:  O646  
Fund: National Natural Science Foundation of China(51771174);Zhejiang Province Natural Science Foundation of China(LR16E010001)
Corresponding Authors:  Fahe CAO     E-mail:  caofh5@mail.sysu.edu.cn

Cite this article: 

ZHU Zejie,ZHANG Qinhao,LIU Pan,ZHANG Jianqing,CAO Fahe. Application of Microelectrochemical Sensors in Monitoring of Localized Interface pH. Journal of Chinese Society for Corrosion and protection, 2019, 39(5): 367-374.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.136     OR     https://www.jcscp.org/EN/Y2019/V39/I5/367

Fig.1  pH distributions (a) and pH mapping (b) at the cut edge of galvanized steel sheet after immersion in 1 mmol/L NaCl solution for different time and 5 h, respectively (tip-substrate distance 15 μm, scan rate 7 μm/s)[33]
Fig.2  SECM image of AZ31B magnesium-based alloy coated with thin sol-gel film after immersion in 0.05 mol/L NaCl solution[35]
Fig.3  SECM images of 316L stainless steel after immersion in 1 mol/L NaCl solution (pH=2.00) for 2 h (a), 24 h (b), 32 h (c), 48 h (d) and 69 h (e)[40]
Fig.4  pH vs time curves for 316L stainless steel immersed in 6%FeCl3 solution, measured with submicron Pt/IrOx-pH micro-sensor electrode under different tip-substrate distances
Imersiontime / hGap / μm

?c?x(x=0)

mol?L-1?μm-1

IA?cm-2
135
40.001270.001440.001691.05×10-47.90×10-3
66.38×10-47.05×10-47.8×10-43.55×10-52.67×10-3
83.09×10-43.46×10-43.91×10-42.05×10-51.54×10-3
101.95×10-42.00×10-42.08×10-43.25×10-62.45×10-4
Table 1  Concentration of protons at different tip-substrate distance after immersion for different time (mol?L-1)
Fig.5  Schematic diagram of pH profile measurement for 316L stainless steel at different tip-substrate distance (a) and pH vs time curves determined in the solution with the initial pH values of 2.00 (b), 6.00 (c) and 11.00 (d)[41]
Fig.6  Surface scannings of probe current (a~d) and pH (e~h) for 316L stainless steel after immersion in 6%FeCl3 solution for 1 h (a, e), 3 h (b, f),7 h (c, g) and 11 h (d, h)[42]
1 KasikI, MrazekJ, MartanT, et al. Fiber-optic pH detection in small volumes of biosamples [J]. Anal. Bioanal. Chem., 2010, 398: 1883
2 Beltrán-PérezG, López-HuertaF, Mu?oz-AguirreS, et al. Fabrication and characterization of an optical fiber pH sensor using sol-gel deposited TiO2 film doped with organic dyes [J]. Sens. Actuator, 2006, 120B: 74
3 TakeshitaY, MartzT R, JohnsonK S, et al. Characterization of an ion sensitive field effect transistor and chloride ion selective electrodes for pH measurements in seawater [J]. Anal. Chem., 2014, 86: 11189
4 KoflerJ, SchmoltnerK, KlugA, et al. Hydrogen ion-selective electrolyte-gated organic field-effect transistor for pH sensing [J]. Appl. Phys. Lett., 2014, 104: 193305
5 TanumihardjaE, OlthuisW, van den BergA. Ruthenium oxide nanorods as potentiometric pH sensor for organs-on-chip purposes [J]. Sensors, 2018, 18: 2901
6 LiaoY H, ChouJ C. Preparation and characterization of the titanium dioxide thin films used for pH electrode and procaine drug sensor by sol-gel method [J]. Mater. Chem. Phys., 2009, 114: 542
7 KuoL M, ChenK N, ChuangY L, et al. A flexible pH-sensing structure using WO3/IrO2 junction with Al2O3 encapsulation layer [J]. ECS Solid State Lett., 2012, 2(3): P28
8 YuJ J, KhalilM, LiuN, et al. Iridium oxide-based chemical sensor for in situ pH measurement of oilfield-produced water under subsurface conditions [J]. Ionics, 2015, 21: 855
9 GlennS J, CullumB M, CarterJ C, et al. Development of a lifetime-based fiber optic imaging sensor to study water transport in thin nafion membranes[A]. Conference on Chemical, Biochemical, and Environmental Fiber Sensors X [C]. Boston, 1998: 235
10 XuF, YanG Z, WangZ W, et al. Continuous accurate pH measurements of human GI tract using a digital pH-ISFET sensor inside a wireless capsule [J]. Measurement, 2015, 64: 49
11 LeeD, CuiT H. Low-cost, transparent, and flexible single-walled carbon nanotube nanocomposite based ion-sensitive field-effect transistors for pH/glucose sensing [J]. Biosens. Bioelectron., 2010, 25: 2259
12 RaiP, JungS, JiT, et al. Ion-sensitive field effect transistors for pH and potassium ion concentration sensing: Towards detection of myocardial ischemia [A]. Conference on Nanosensors and Microsensors for Bio-Systems [C]. San Diego, 2008: 69310
13 KimJ H, FujitaS, ShiratoriS. Fabrication and Characterization of TiO2 Thin film prepared by a layer-by-layer self-assembly method [J]. Thin Solid Films, 2006, 499: 83
14 ShervedaniR K, MehrdjardiH R Z, GhahfarokhiS H K. Electrochemical characterization and application of Ni-RuO2 as a pH sensor for determination of petroleum oil acid number [J]. J. Iran. Chem. Soc., 2007, 4: 221
15 MihellJ A, AtkinsonJ K. Planar thick-film pH electrodes based on ruthenium dioxide hydrate [J]. Sens. Actuator, 1998, 48B: 505
16 MauryaD K, SardarinejadA, AlamehK. High-sensitivity pH sensor employing a sub-micron ruthenium oxide thin-film in conjunction with a thick reference electrode [J]. Sens. Actuator, 2013, 203A: 300
17 HuangF F, JinY, WenL. Investigations of the hydration effects on cyclic thermo-oxidized Ir/IrOx electrode [J]. J. Electrochem. Soc., 2015, 162: B337
18 KakooeiS, IsmailM C, WahjoediB A. Electrochemical study of iridium oxide coating on stainless steel substrate [J]. Int. J. Electrochem. Sci., 2013, 8: 3290
19 ChenD C, ZhenJ S, FuC Y. Preparation of Ir/IrOx pH electrode based on melt-oxidation and its response mechanism investigation [J]. Trans. Nonferrous Met. Soc. China, 2003, 13: 1459
20 LaleA, TsopelaA, CivélasA, et al. Integration of tungsten layers for the mass fabrication of WO3-based pH-sensitive potentiometric microsensors [J]. Sens. Actuator, 2015, 206B: 152
21 HaY, WangM. Capillary melt method for micro antimony oxide pH electrode [J]. Electroanalysis, 2006, 18: 1121
22 SvobodováE, BaldrianováL, Ho?evarS B, et al. Electrochemical stripping analysis of selected heavy metals at antimony trioxide-modified carbon paste electrode [J]. Int. J. Electrochem. Sci., 2012, 7: 197
23 HaY J, MyungD, ShimJ H, et al. A dual electrochemical microsensor for simultaneous imaging of oxygen and pH over the rat kidney surface [J]. Analyst, 2013, 138: 5258
24 LuY, WangT Y, CaiZ H, et al. Anodically electrodeposited iridium oxide films microelectrodes for neural microstimulation and recording [J]. Sens. Actuator, 2009, 137B: 334
25 DuR G, HuR G, HuangR S, et al. In situ measurement of Cl- concentrations and pH at the reinforcing steel/concrete interface by combination sensors [J]. Anal. Chem., 2006, 78: 3179
26 HaY J, MyungD, ShimJ H, et al. A dual electrochemical microsensor for simultaneous imaging of oxygen and pH over the rat kidney surface [J]. Analyst, 2013, 138: 5258
27 IzquierdoJ, SantanaJ J, GonzálezS, et al. Uses of scanning electrochemical microscopy for the characterization of thin inhibitor films on reactive metals: The protection of copper surfaces by benzotriazole [J]. Electrochim. Acta, 2010, 55: 8791
28 González-GarcíaY, SantanaJ J, González-GuzmánJ, et al. Scanning electrochemical microscopy for the investigation of localized degradation processes in coated metals [J]. Prog. Org. Coat., 2010, 69: 110
29 IzquierdoJ, NagyL, VargaA, et al. Spatially resolved measurement of electrochemical activity and pH distributions in corrosion processes by scanning electrochemical microscopy using antimony microelectrode tips [J]. Electrochim. Acta, 2011, 56: 8846
30 IzquierdoJ, KissA, SantanaJ J, et al. Development of Mg2+ ion-selective microelectrodes for potentiometric scanning electrochemical microscopy monitoring of galvanic corrosion processes [J]. J. Electrochem. Soc., 2013, 160: C451
31 IzquierdoJ, EifertA, KranzC, et al. In situ monitoring of pit nucleation and growth at an iron passive oxide layer by using combined atomic force and scanning electrochemical microscopy [J]. ChemElectroChem, 2015, 2: 1847
32 IzquierdoJ, Martín-RuízL, Fernández-PérezB M, et al. Scanning microelectrochemical characterization of the effect of polarization on the localized corrosion of 304 stainless steel in chloride solution [J]. J. Electroanal. Chem., 2014, 728: 148
33 Fernández-PérezB M, IzquierdoJ, GonzálezS, et al. Scanning electrochemical microscopy studies for the characterization of localized corrosion reactions at cut edges of coil-coated steel [J]. J. Solid State Electrochem., 2014, 18: 2983
34 KaravaiO V, BastosA C, ZheludkevichM L, et al. Localized electrochemical study of corrosion inhibition in microdefects on coated AZ31 magnesium alloy [J]. Electrochim. Acta, 2010, 55: 5401
35 LamakaS V, KaravaiO V, BastosA C, et al. Monitoring local spatial distribution of Mg2+, pH and ionic currents [J]. Electrochem. Commun., 2008, 10: 259
36 TarybaM, LamakaS V, SnihirovaD, et al. The combined use of scanning vibrating electrode technique and micro-potentiometry to assess the self-repair processes in defects on “smart” coatings applied to galvanized steel [J]. Electrochim. Acta, 2011, 56: 4475
37 PageA, KangM, ArmitsteadA, et al. Quantitative visualization of molecular delivery and uptake at living cells with self-referencing scanning ion conductance microscopy-scanning electrochemical microscopy [J]. Anal. Chem., 2017, 89: 3021
38 MorrisC A, ChenC C, ItoT, et al. Local pH measurement with scanning ion conductance microscopy [J]. J. Electrochem. Soc., 2013, 160: H430
39 MorrisC A, ChenC C, BakerL A. Transport of redox probes through single pores measured by scanning electrochemical-scanning ion conductance microscopy (SECM-SICM) [J]. Analyst, 2012, 137: 2933
40 ZhuZ J, LiuX Y, YeZ N, et al. A fabrication of iridium oxide film pH micro-sensor on Pt ultramicroelectrode and its application on in-situ pH distribution of 316L stainless steel corrosion at open circuit potential [J]. Sens. Actuator B-Chem., 2018, 255: 1974
41 ZhuZ J, YeZ N, ZhangQ H, et al. Novel dual Pt-Pt/IrOx ultramicroelectrode for pH imaging using SECM in both potentiometric and amperometric modes [J]. Electrochem. Commun., 2018, 88: 47
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[5] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[6] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[7] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[8] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[9] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[10] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[11] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[12] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[13] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[14] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[15] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
No Suggested Reading articles found!