Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (4): 345-352    DOI: 10.11902/1005.4537.2019.054
Current Issue | Archive | Adv Search |
Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel
SUN Xiaoguang1(),HAN Xiaohui1,ZHANG Xingshuang2,ZHANG Zhiyi1,LI Gangqing1,DONG Chaofang2
1. Technical Engineering Department, CRRC Qingdao Sifang Co. , Ltd. , Qingdao 266111, China
2. Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(7698KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Plates of ultra-low carbon austenitic stainless steel 304L were welded by manual arc welding and argon arc welding respectively with 316L stainless steel as filler. The welded joints were characterized by means of electron backscatter diffraction (EBSD) and X-ray diffraction (XRD). Whilst the welded joints were chemically passivated in 10% and 20% hydrogen peroxide solutions respectively, then their corrosion behavior was examined via electrochemical means and X-ray photoelectron spectroscopy (XPS). Results showed that the pitting potential of the weld zone was the highest due to the incorporation of 316L stainless steel welding wire. The corrosion resistance of the matrix was relatively good because its inherent microstructure of relatively uniform and small grains. The heat affected zone has coarse grains and/or mixed grain structure, so that its pitting potential was the lowest, correspondingly its corrosion resistance was the worst. In a word, the welded joints of austenitic stainless steel 304L had the best corrosion resistance, when they were passivated in 10% hydrogen peroxide solution for 15 min.

Key words:  ultralow carbon austenitic stainless steel      welded joint      chemical passivation      corrosion resistance     
Received:  01 May 2019     
ZTFLH:  TG178  
Fund: Supported by National Key Research and Development Program of China(2017YFB0702300);National Environmental Corrosion Platform of China(2005DKA10400);National Natural Science Foundation of China(51871028)
Corresponding Authors:  Xiaoguang SUN     E-mail:  sunx_sf@126.com

Cite this article: 

SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2019, 39(4): 345-352.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2019.054     OR     https://www.jcscp.org/EN/Y2019/V39/I4/345

SteelCCrMoNiSiMnPSFe
304L0.02318.6---8.10.581.670.0260.005Bal.
316L0.00919.252.4812.500.361.570.0180.005Bal.
Table 1  Chemical compositions of 304L and 316L stainless steels (mass fraction / %)
Layer No.Weld methodWelding materialSizeCurrent AInterpass temp. / ℃
1HDE316L-16Φ3.27217
2HDE316L-16Φ3.210367
3HDE316L-16Φ3.210365
4HDE316L-16Φ3.210080
Table 2  Manual arc welding parameters of 304L stainless steel
Fig.1  Welded joint schematic of 304L stainless steel
Fig.2  EBSD images of welded joints of 304L stainless steel after welding by 304L-HD (a) and 304L-HWS (b)
Fig.3  XRD spectra of welded joints of 304L stainless steel after two different welding processes
Fig.4  Potentiodynamic polarization curves of welded joints of 304L stainless steel after welding by 304L-HD (a) and 304L-HWS (b)
Fig.5  Corrosion morphologies of welded joints of 304L stainless steel after salt spray test for 1 d: (a) BM (HD), (b) WZ (HD), (c) HAZ (HD), (d) BM (HWS), (e) WZ (HWS), (f) HAZ (HWS)
Fig.6  Potentiodynamic polarization curves of the matrix (a), weld zone (b) and heat affected zone (c) of 304L stainless steel after manual arc welding and then chemical passivation
Fig.7  Pit potentials of the matrix (BM), weld zone (WZ) and heat affected zone (HAZ) of HD welded joint of 304L stainless steel after chemical passivation
Fig.8  Potentiodynamic polarization curves of the matrix (a), weld zone (b) and heat affected zone (c) of 304L stainless steel after HWS welding and then chemical passivation
Fig.9  Pit potentials of the matrix, weld zone and heat affected zone of HWS welded joint 304L stainless steel after chemical passivation
Fig.10  XPS full spectrum and fine spectra of Cr 2p3/2 (a), Fe 2p3/2 (b) and O 2p (c) for the surface film form-ed on 304L stainless steel after chemical passivati-on in the solution containing 10%H2O2
Fig.11  XPS full spectrum and fine spectra of Cr 2p3/2 (a), Fe 2p3/2 (b) and O 2p (c) for the surface film formed on 304L stainless steel after chemical passivation in the solution containing 20%H2O2
[1] ZhaoR R, YangZ B, HanX H, et al. Intergranular corrosion behavior of laser lap welding joint of dissimilar austenitic stainless steels for railway vehicle [J]. Hot Work. Technol., 2018, 47(13): 60
[1] (赵瑞荣,杨志斌,韩晓辉等. 轨道车辆用异种奥氏体不锈钢激光搭接焊接头的晶间腐蚀行为 [J]. 热加工工艺, 2018, 47(13): 60)
[2] PanJ J, ZhangS, WangS K, et al. Analysis and modification of weld cracking of high temperature austenitic stainless steel pressure pipe [J]. Chem. Eng. Mach., 2018, 45: 611
[2] (潘建华, 张苏, 王世凯等. 高温奥氏体不锈钢压力管道焊缝开裂原因分析及改造 [J]. 化工机械, 2018, 45: 611)
[3] NiX Q, KongD C, WuW H, et al. Corrosion behavior of 316l stainless steel fabricated by selective laser melting under different scanning speeds [J]. J. Mater. Eng. Perform., 2018, 27: 3667
[4] WuX Q, FuY, KeW, et al. Corrosion behavior of high nitrogen austenitic stainless steels [J]. J. Chin. Soc. Corros. Prot., 2016, 36: 197
[4] (吴欣强, 付尧, 柯伟等. 高氮奥氏体不锈钢的腐蚀行为研究 [J]. 中国腐蚀与防护学报, 2016, 36: 197)
[5] FengC, HuangY H, ShenY F, et al. Galvanic corrosion and protection of 6061 aluminum alloy coupled with 30CrMnSiA steel in simulative industry-marine atmospheric environment [J]. Chin. J. Nonferrous Met., 2015, 25: 1417
[5] (冯驰, 黄运华, 申玉芳等. 6061铝合金与30CrMnSiA结构钢在模拟工业-海洋大气环境下的电偶腐蚀防护 [J]. 中国有色金属学报, 2015, 25: 1417)
[6] XueW, LiZ L, YuW, et al. Corrosion behaviors of container steel plates in tropical marine atmosphere environment [J]. J. Iron Steel Res., 2019, 31: 296
[6] (薛伟, 李曌亮, 余伟等. 集装箱钢板在湿热海洋大气环境中的腐蚀行为 [J]. 钢铁研究学报, 2019, 31: 296)
[7] WangL, DongC F, YuQ, et al. The correlation between the distribution/size of carbides and electrochemical behavior of 17Cr-1Ni ferritic-martensitic stainless steel [J]. Metall. Mater. Trans., 2019, 50A: 388
[8] XuW M, ZhanJ, LiC T, et al. Effect of surface condition of welded joint of 304L stainless steel on its corrosion behavior in boric acid solution [J]. Corros. Prot., 2018, 39: 459
[8] (徐为民, 詹静, 李成涛等. 304L不锈钢焊接接头表面状态对其在硼酸溶液中腐蚀行为的影响 [J]. 腐蚀与防护, 2018, 39: 459)
[9] YuC Y. Corrosion of welding joint of stainless steel and protection [J]. Total Corros. Control, 2016, 30(2): 26
[9] 余存烨. 不锈钢焊接接头腐蚀与防护 [J]. 全面腐蚀控制, 2016, 30(2): 26)
[10] YangG H. Improved chromate passivation process for superplastic zinc aluminum alloy [J]. Electroplat. Finish., 2012, 31(7): 34
[10] 杨改航. 超塑锌铝合金铬酸盐钝化改进工艺 [J]. 电镀与涂饰, 2012, 31(7): 34)
[11] LiuZ R. Trends in replacements for chromate conversion coatings [J]. Total Corros. Control, 2012, 26(11): 40
[11] 刘仁志. 取代铬酸盐钝化处理工艺的动向 [J]. 全面腐蚀控制, 2012, 26(11): 40)
[12] FuY H, ZhangH L, WangY, et al. Immobilization of soil contaminated by lead and cadmium using phosphate [J]. Environ. Eng., 2017, 35 (9) : 176
[12] (付煜恒, 张惠灵, 王宇 等. 磷酸盐对铅镉复合污染土壤的钝化修复研究 [J]. 环境工程, 2017, 35(9): 176)
[13] FangB, ZhangJ, JiM, et al. Effect of biochar combined with phosphate on in-situ immobilization of Pb and Cd in contaminated soil [J]. Environ. Pollut. Control, 2018, 40: 1389
[13] (房彬, 张建, 季民 等. 生物炭复配磷酸盐对Pb-Cd污染土壤原位钝化修复的研究 [J]. 环境污染与防治, 2018, 40: 1389)
[14] ZhangY, KongL Z, LuW, et al. Electrochemical properties of passive film on stainless steel surface in nitric acid solution [J]. Corros. Prot., 2018, 39: 906
[14] (张瑜, 孔令真, 路伟等. 在硝酸溶液中不锈钢表面钝化膜的电化学特性 [J]. 腐蚀与防护, 2018, 39: 906)
[15] ZhaoX B, CaoM Q. TIG welding technology of 304L stainless steel [J]. Weld. Technol., 2011, 40(7): 20
[15] (赵雪勃, 曹梅青. 304L不锈钢的钨极氩弧焊工艺 [J]. 焊接技术, 2011, 40(7): 20)
[16] LuoH, YuQ, DongC F, et al. Influence of the aging time on the microstructure and electrochemical behaviour of a 15-5PH ultra-high strength stainless steel [J]. Corros. Sci., 2018, 139: 185
[17] WangL, KongD C, DongC F, et al. Systematic insight into chloride concentration, applied potential and time effect on the passive film of Cu-Zn-Ni ternary alloy in alkaline solution [J]. J. Mater. Eng. Perform., 2018, 27: 4280
[18] QiaoY X, RenA, LiuF H, et al. Corrosion behavior of austenite stainless steel AL-6XN in supercritical water environment [J]. Corro. Prot., 2012, 33: 960
[18] (乔岩欣, 任爱, 刘飞华等. 奥氏体不锈钢AL-6XN在超临界水中的腐蚀行为 [J]. 腐蚀与防护, 2012, 33: 960)
[19] ManC, DongC F, LiuT T, et al. The enhancement of microstructure on the passive and pitting behaviors of selective laser melting 316L SS in simulated body fluid [J]. Appl. Surf. Sci., 2019, 467/468: 193
[20] MaH C, LiuZ Y, DuC W, et al. Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide [J]. Corros. Sci., 2015, 100: 627
[21] MaH C, LiuZ Y, DuC W, et al. Effect of cathodic potentials on the SCC behavior of E690 steel in simulated seawater [J]. Mater. Sci. Eng., 2015, A642: 22
[22] DuY, ZhaoG R, YaoH F. Study on hydrogen peroxide passivation technology and passivators with environmental protection function [J]. Shaanxi Electr. Power, 2007, 35(6): 26
[22] (杜越, 赵贵荣, 姚卉芳. 环保型钝化剂双氧水钝化工艺的研究 [J]. 陕西电力, 2007, 35(6): 26)
[23] LiG J, JiQ R, CaiY K, et al. Research of environmentally friendly passivation using citric acid formulations [J]. J. Tianjin Univ. Sci. Technol., 2012, 27(1): 48
[23] (李桂菊, 冀倩儒, 蔡永凯等. 柠檬酸环境友好钝化液配方研究 [J]. 天津科技大学学报, 2012, 27(1): 48)
[24] SongJ H, LiuN, YuanC M, et al. Research and application of the passivation technique conditions for hydrogen peroxide [J]. Nixia Electr. Power, 2017, (6): 58
[24] (宋建华, 刘娜, 袁从明等. 双氧水钝化工艺条件的研究及应用 [J]. 宁夏电力, 2017, (6): 58)
[25] LvJ L, LuoH Y. Comparison of corrosion behavior between coarse grained and nano/ultrafine grained 304 stainless steel by EWF, XPS and EIS [J]. J. Nucl. Mater., 2014, 452: 469
[26] JungR H, TsuchiyaH, FujimotoS. XPS characterization of passive films formed on type 304 stainless steel in humid atmosphere [J]. Corros. Sci., 2012, 58: 62
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[9] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[10] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[11] HUANG Chen,HUANG Feng,ZHANG Yu,LIU Haixia,LIU Jing. Galvanic Corrosion Behavior for Weld Joint of High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[12] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[13] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[14] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[15] Delin LAI,Gang KONG,Chunshan CHE. Effect of Sodium Silicate Sealing on Corrosion Resistance of TiO2Conversion Film on Hot-dip Galvanized[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
No Suggested Reading articles found!