Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (4): 291-298    DOI: 10.11902/1005.4537.2018.132
Current Issue | Archive | Adv Search |
Research Progress on Hot Corrosion of Rare Earth Oxides Co-doped ZrO2 Ceramic Coatings in Molten Na2SO4+NaVO3 Salts
CHEN Chao1,LIANG Yanfen1,LIANG Tianquan1,2(),MAN Quanyan1,LUO Yidong1,ZHANG Xiuhai1,2,ZENG Jianmin1,2
1. School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
2. Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Materials, Guangxi University, Nanning 530004, China
Download:  HTML  PDF(4930KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The doping effect of single, binary and ternary rare earth oxides respectively on the hot corrosion resistance of ZrO2 ceramic coatings in molten Na2SO4+NaVO3 salts was systematically summarized and discussed in this paper. The hot corrosion behavior of the top ceramic coating, thermal grown oxide scale and bond coat of the TBCs in molten Na2SO4+NaVO3 and the relevant hot corrosion mechanisms were summarized. The research direction of improving the hot corrosion resistance of ZrO2 ceramic coating against the Na2SO4+NaVO3 salts was suggested, too.

Key words:  rare earth oxides co-doped zirconia ceramic coating      sulfate and vanadate molten salts      hot corrosion      research progress     
Received:  13 September 2018     
ZTFLH:  TG174  
Fund: Supported by National Natural Science Foundation of China(51361003);Youth Foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metallic and Featured Material(GXYSYF1801);Funding Project of the Incubation Programme for Thousands of Youth Backbone Teachers for Guangxi Institution of Higher Educations (the first batch)
Corresponding Authors:  Tianquan LIANG     E-mail:  liangtianquan@gxu.edu.cn

Cite this article: 

CHEN Chao,LIANG Yanfen,LIANG Tianquan,MAN Quanyan,LUO Yidong,ZHANG Xiuhai,ZENG Jianmin. Research Progress on Hot Corrosion of Rare Earth Oxides Co-doped ZrO2 Ceramic Coatings in Molten Na2SO4+NaVO3 Salts. Journal of Chinese Society for Corrosion and protection, 2019, 39(4): 291-298.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.132     OR     https://www.jcscp.org/EN/Y2019/V39/I4/291

Fig.1  Relationship between Y2O3 content and cycle life of YSZ coating[9]
Fig.2  Content of m-ZrO2 in as-prepared ScYSZ after hot corrosion in molten NaVO3 at 700 ℃ or 900 ℃ for 100 h[16]
Fig.3  XRD patterns of YSZ (a) and CYSZ (b) coatings after hot corrosion in Na2SO4+V2O5 molten salt at 1000 ℃ for 12 and 30 h, respectively[17]
Fig. 4  XRD spectra of ScYSZ (a) and YSZ (b) coatings after hot corrosion in Na2SO4+V2O5 molten salt at 1000 ℃[8]
OxideNa3VO4NaVO3V2O5
Y2O3No reactionYVO4YVO4
CeO2No reactionNo reactionCeVO4
ZrO2No reactionNo reactionZrV2O7
GeO2Na4Ge9O20Na4Ge9O20No reaction
Ta2O5NaTaO3Na2Ta4O11α-TaVO5
Table 1  Chemical reactivities of various oxides with vanadate compounds[19]
Fig.5  SEM surface morphologies of YSZ (a) and CYSZ (b) after hot corrosion in Na2SO4+V2O5 molten salt at 1050 ℃ for 20 and 28 h, respectively[20]
Fig.6  SEM surface morphologies of TiYSZ after hot corrosion in Na2SO4+V2O5 molten salt at 1050 ℃ for 20 h (a) and 40 h (b)[20]
Fig.7  Typical structure of YSZ thermal barrier coating
[1] ZhouH, LiF, HeB, et al. Research progresses in materials for thermal barrier coatings [J]. Mater. Rev., 2006, 20(10): 40
[1] (周洪, 李飞, 何博等. 热障涂层材料研究进展 [J]. 材料导报, 2006, 20(10): 40)
[2] NelsonW A, OrensteinR M. TBC experience in land-based gas turbines [J]. J. Therm. Spray Technol., 1997, 6: 176
[3] LiQ L, LiuH F. Microstructure and properties of plasma sprayed Sc2O3-Y2O3-ZrO2 TBCs [J]. Therm. Spray Technol., 2016, 8(1): 17
[3] (李其连, 刘怀菲. 等离子喷涂Sc2O3-Y2O3-ZrO2热障涂层组织结构和性能研究 [J]. 热喷涂技术, 2016, 8(1): 17)
[4] HuaY F, PanW, LiZ X, et al. Research progress of hot corrosion-resistance for thermal barrier coatings [J]. Rare Met. Mater. Eng., 2013, 42: 1976
[4] (华云峰, 潘伟, 李争显等. 热障涂层抗腐蚀研究进展 [J]. 稀有金属材料与工程, 2013, 42: 1976)
[5] LiuY B, LiuJ H, YuY H, et al. Review of hot corrosion of thermal barrier coatings of gas turbine [J]. Chin. J. Ship Res., 2017, 12: 107
[5] (刘永葆, 刘建华, 余又红等. 燃气轮机热障涂层高温腐蚀研究综述 [J]. 中国舰船研究, 2017, 12: 107)
[6] RaghavanS, MayoM J. The hot corrosion resistance of 20 mol% YTaO4 stabilized tetragonal zirconia and 14 mol% Ta2O5 stabilized orthorhombic zirconia for thermal barrier coating applications [J]. Surf. Coat. Technol., 2002, 160: 187
[7] HabibiM H, WangL, LiangJ D, et al. An investigation on hot Corrosion behavior of YSZ-Ta2O5 in Na2SO4+V2O5 salt at 1100 ℃ [J]. Corros. Sci., 2013, 75: 409
[8] LiuH F, XiongX, LiX B, et al. Hot corrosion behavior of Sc2O3-Y2O3-ZrO2 thermal barrier coatings in presence of Na2SO4+V2O5 molten salt [J]. Corros. Sci., 2014, 85: 87
[9] StecuraS. Optimization of the NiCrAl-Y/ZrO-Y2O3 thermal barrier system [J]. Med. Sci. Monitor: Int. Med. J. Exp. Clin. Res., 1985, 13(2): CR100-4
[10] MillerR A. Ceramic thermal barrier coatings for electric utility gas turbine engines [R]. Berkeley: NACE, 1986)
[11] JonesR L, JonesS R, WilliamsC E. Sulfation of CeO2 and ZrO2 relating to hot corrosion [J]. J. Electrochem. Soc., 1985, 132: 1498
[12] JonesR L, WilliamsC E, JonesA J. Reaction of vanadium compounds with ceramic oxides [J]. J. Electrochem. Soc., 1986, 133: 227
[13] JonesR L. Scandia-stabilized zirconia for resistance to molten vanadate-sulfate corrosion [J]. Surf. Coat. Technol., 1989, 39/40: 89
[14] JonesR L, MessD. India as a hot corrosion‐resistant stabilizer for zirconia [J]. J. Am. Ceram. Soc., 1992, 75: 1818
[15] CaoX Q. New Materials and Structures for Thermal Barrier Coatings [M]. Beijing: Science Press, 2016
[15] (曹学强. 热障涂层新材料和新结构 [M]. 北京: 科学出版社, 2016)
[16] JonesR L, ReidyR F, D. ScandiaMess , yttria-stabilized zirconia for thermal barrier coatings[J]. Surf. Coat. Technol., 1996, 82: 70
[17] PidaniR A, RazaviR S, MozafariniaR, et al. Comparison of hot corrosion resistance of YSZ and CYSZ thermal barrier coatings in presence of sulfate-vanadate molten salts [J]. Adv. Mater. Res., 2012, 472-475: 141
[18] LiuH F, LiS L, LiQ L, et al. Investigation on the phase stability, sintering and thermal conductivity of Sc2O3-Y2O3-ZrO2 for thermal barrier coating application [J]. Mater. Des., 2010, 31: 2972
[19] JonesR L. Some aspects of the hot corrosion of thermal barrier coatings [J]. J. Therm. Spray Technol., 1997, 6: 77
[20] HabibiM H, GuoS M. The hot corrosion behavior of plasma sprayed zirconia coatings stabilized with yttria, ceria, and titania in sodium sulfate and vanadium oxide [J]. Mater. Corros., 2015, 66: 270
[21] XiangJ Y, ChenS H, HuangJ H, et al. Research progresses of rare-earth zirconate ceramic materials for thermal barrier coatings [J]. Mater. Rev., 2012, 26: 147
[21] (项建英, 陈树海, 黄继华等. 稀土锆酸盐热障涂层材料研究进展 [J]. 材料导报, 2012, 26: 147)
[22] XuZ H, HeL M, TangZ H, et al. Evolution of high temperature corrosion behavior of La2(Zr0.7Ce0.3)2O7 with the addition of Y2O3 thermal barrier coatings in contacts with vanadate-sulfate salts [J]. J. Alloy. Compd., 2012, 536: 106
[23] GuoL, ZhangC L, LiM Z, et al. Hot corrosion evaluation of Gd2O3-Yb2O3 co-doped Y2O3 stabilized ZrO2 thermal barrier oxides exposed to Na2SO4+V2O5 molten salt [J]. Ceram. Int., 2017, 43: 2780
[24] ZhouH H, SongP, LiaoH X, et al. Review on the failure factors of thermal barrier coatings [J]. Mater. Rev., 2016, 30(7): 81
[24] (周会会, 宋鹏, 廖红星等. 影响热障涂层失效因素的研究现状及展望 [J]. 材料导报, 2016, 30(7): 81)
[25] NiranatlumpongP, PontonC B, EvansH E. The failure of protective oxides on plasma-sprayed NiCrAlY overlay coatings [J]. Oxidat. Met., 2000, 53: 241
[26] ZhangY J, ZhangY C, SunX F, et al. Present development of thermal barrier coatings [J]. Mater. Prot., 2004, 37(6): 26
[26] (张玉娟, 张玉驰, 孙晓峰等. 热障涂层的发展现状 [J]. 材料保护, 2004, 37(6): 26)
[27] HuaJ J, ZhangL P, LiuZ W, et al. Progress of research on the failure mechanism of thermal barrier coatings [J]. J. Inorg. Mater., 2012, 27: 680
[27] (华佳捷, 张丽鹏, 刘紫微等. 热障涂层失效机理研究进展 [J]. 无机材料学报, 2012, 27: 680)
[28] DaroonparvarM, YajidM A M, YusofN M, et al. Investigation of three steps of hot corrosion process in Y2O3 stabilized ZrO2 coatings including nano zones [J]. J. Rare Earths, 2014, 32: 989
[29] BallardJ D, DavenportJ, LewisC, et al. Phase stability of thermal barrier coatings made from 8wt.% yttria stabilized zirconia: A technical note [J]. J. Therm. Spray Technol., 2003, 12: 34
[30] JonesR L. The development of hot-corrosion-resistant zirconia thermal barrier coatings [J]. Mater. High Temperat., 1991, 9: 228
[31] ZhouC H, ZhangZ Y, ZhangQ M, et al. Comparison of the hot corrosion of nanostructured and microstructured thermal barrier coatings [J]. Mater. Corros., 2014, 65: 613
[32] Loghman-EstarkiM R, NejatiM, EdrisH, et al. Evaluation of hot corrosion behavior of plasma sprayed scandia and yttria co-stabilized nanostructured thermal barrier coatings in the presence of molten sulfate and vanadate salt [J]. J. Eur. Ceram. Soc., 2015, 35: 693
[33] WuN Q, ChenZ, MaoS X. Hot corrosion mechanism of composite Alumina/Yttria-Stabilized zirconia coating in molten sulfate-vanadate salt [J]. J. Am. Ceram. Soc., 2005, 88: 675
[34] RenJ. Studies on the hot corrosion resistance of YSZ thermal barrier coatings [D]. Harbin: Harbin Institute of Technology, 2011
[34] (任杰. YSZ热障涂层的热腐蚀性能研究 [D]. 哈尔滨: 哈尔滨工业大学, 2011)
[35] BaiZ M, GuoL, LiangT Q, et al. Isothermal corrosion behavior of thermal barrier coatings in molten salt environments [J]. Trans. Mater. Heat Treat., 2011, 32(11): 123
[35] (白致铭, 郭磊, 梁天权等. 熔盐环境下热障涂层的等温热腐蚀行为研究 [J]. 材料热处理学报, 2011, 32(11): 123)
[36] BiX F, GuoH B, GongS K, et al. Investigation of high temperature hot corrosion behavior of thermal barrier coatings prepared by EB-PVD [J]. J. Chin. Soc. Corros. Prot., 2002, 22: 84
[36] (毕晓昉, 郭洪波, 宫声凯等. 电子束物理气相沉积热障涂层抗高温腐蚀性能的研究 [J]. 中国腐蚀与防护学报, 2002, 22: 84)
[37] RamachandraC, KangN L, TewariS N. Durability of TBCs with a surface environmental barrier layer under thermal cycling in air and in molten salt [J]. Surf. Coat. Technol., 2003, 172: 150
[38] BatistaC, PortinhaA, RibeiroR M, et al. Evaluation of laser-glazed plasma-sprayed thermal barrier coatings under high temperature exposure to molten salts [J]. Surf. Coat. Technol., 2006, 200: 6783
[39] TaniE, YoshimuraM, SomiyaS. Revised phase diagram of the system ZrO2-CeO2 below 1400 ℃ [J]. J. Am. Ceram. Soc., 1983, 66: 506
[40] DongH Y, RenY, WangD X, et al. Hot corrosion behaviors of SrZrO3 ceramic co-doped with Y2O3 and Yb2O3 in molten Na2SO4, V2O5, and Na2SO4+V2O5 salts mixture [J]. J. Eur. Ceram. Soc., 2014, 34: 3917
[1] Lijia YU,Wenping LIANG,Hao LIN,Qiang MIAO,Biaozi HUANG,Shiyu CUI. Evaluation of Hot Corrosion Behavior of Laser As-remelted YSZ Thermal Barrier Coatings at 950 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[2] Hao CHEN,Qing CHEN,Li XIN,Long SHI,Shenglong ZHU,Fuhui WANG. Preparation and High Temperature Corrosion Behavior of Aluminized Nanocrystalline Coating on DD98M Alloy[J]. 中国腐蚀与防护学报, 2019, 39(1): 59-67.
[3] Xijing WANG, Boshi WANG, Chao YANG, Yan YANG, Bin SHEN. Hot Corrosion of Pure Nickel and Its Weld Joints in Molten Na2SO4-K2SO4 Salts[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[4] Xizhong WANG,Jianhao WU,Hui PENG,Hongbo GUO,Shengkai GONG. Hot-gas Corrosion Resistance of La2Ce2O7/8YSZ Duble-ceramic-layered Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[5] Guangming LIU,Kangsheng LIU,Xiaofei MAO,Zhongping WAN,Jianhang HUANG,Mingming YU,Yuankui WANG. Hot Corrosion of T91 Steel in Molten Mixture of KCl+Na2SO4+K2SO4[J]. 中国腐蚀与防护学报, 2017, 37(1): 23-28.
[6] Wei LI,Yanxia DU,Zitao JIANG,Minxu LU. Research Progress on AC Interference of Electrified Railway on Buried Pipeline[J]. 中国腐蚀与防护学报, 2016, 36(5): 381-388.
[7] Bo YANG,Maodong LI,Guangming LIU,Yuankui WANG,Kangsheng LIU,Wei ZHAI,Jianhang HUANG. Hot Corrosion Behavior of Inconel 625/NiCr Coating Prepared by HOVF[J]. 中国腐蚀与防护学报, 2016, 36(5): 483-488.
[8] WU Duoli, ZHANG Hongyu, WEI Hua, ZHENG Qi, JIN Tao, SUN Xiaofeng. Hot Corrosion Behavior of Four Modified Aluminide Coatings on DZ38G Alloy[J]. 中国腐蚀与防护学报, 2014, 34(6): 502-506.
[9] WANG Li,LIU Chunyang,HAN Zhenyu, TONG Wenwei. HOT CORROSION BEHAVIOR AND EVALUATION OF TURBINE COMPONENTS AND MATERIALS USED FOR GAS TURBINE ENGINE[J]. 中国腐蚀与防护学报, 2011, 31(5): 399-403.
[10] XU Yangtao, XIA Tiandong, YAN Jianqiang. EFFECT OF ALLOYING ELEMENTS TO HOT CORROSION BEHAVIOR OF NOVEL Co-Al-W SUPERALLOY[J]. 中国腐蚀与防护学报, 2010, 30(6): 457-464.
[11] WEI Hua; HUANG Liang; LIANG Jingjing; SUN Xiaofeng; GUAN Hengrong; HU Zhuangqi. EFFECT OF Re ON THE HOT-CORROSION BEHAVIOR OF A NiCrAlY OVERLAY COATING[J]. 中国腐蚀与防护学报, 2010, 30(2): 150-154.
[12] ZHU Ming LI Meishuan ZHOU Yanchun. HOT CORROSION RESISTANCE OF Cr1-xAlxN COATINGS ON A Ti3Al BASED ALLOY IN DEPOSITED (Na2SO4+K2SO4) MOLTEN SALT AT 800 ℃[J]. 中国腐蚀与防护学报, 2009, 29(4): 306-311.
[13] ;. STUDY OF HOT CORROSION RESISTANCES OF TWO NICKEL BASE SUPERALLOYS FOR DIRECTIONAL SOLIDIFICATION[J]. 中国腐蚀与防护学报, 2008, 28(5): 277-281 .
[14] . Recent Progress in Study of Non-toxic Antifouling Coatings[J]. 中国腐蚀与防护学报, 2008, 28(3): 181-185 .
[15] . High Temperature Oxidation and Hot Corrosion Behavior of Enamel/Sputtered NiCrAlY Composite Coating[J]. 中国腐蚀与防护学报, 2005, 25(6): 344-350 .
No Suggested Reading articles found!