Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (3): 253-259    DOI: 10.11902/1005.4537.2018.100
Current Issue | Archive | Adv Search |
Electrochemical Corrosion of YG15 Cemented Carbide
Yuan SHI,Zhuji JIN(),Guannan JIANG,Zuotao LIU,Zhongzheng ZHOU,Zebei WANG
School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
Download:  HTML  PDF(6597KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cemented carbide is widely used in many fields because of its good properties. However, it is difficult to be processed with traditional machining methods. Electrochemical grinding is a kind of non-traditional method which combines electrochemical machining and mechanical grinding with great processing quality and high removal rate. In this paper, electrochemical corrosion mechanism of YG15 cemented carbide in electrolyte of 3 mol/L NaNO3 is focused by means of potentiodynamic- and potentiostatic-curve measurements. Results show that the electrochemical corrosion of YG15 cemented carbide in NaNO3 electrolyte is the result of co-oxidation corrosion of WC and Co. Corrosion phenomena vary a lot under different potentials. Moreover, when the anode potential is high, the dissolution rate of metal Co (which acts as the binder) increases, leading to the decreasing adhesion of the formed corrosion product scale to the substrate, which makes the corrosion product scale is prone to spall off. In addition, the corrosion dissolution of the substrate and the spall off for the corrosion product scale may cause the current oscillations on curves of corrosion current vs time, which leads to serious corrosion and even destruction of the substrate surface. Therefore, the anode potential should not excess 3.5 VAg/AgCl so that to avoid the above mentioned harmful event during electrochemical grinding. The composition of the corrosion layer is determined to be tungsten oxides (which is mainly WO3) by energy dispersive spectroscope and X-ray photoelectron spectroscope. Reasonable voltage parameters could help increase the removal rate of materials a lot in electrochemical grinding.

Key words:  tungsten carbide      electrochemical grinding      potentiodynamic curve      potentiostatic curve      electrochemical corrosion     
Received:  11 July 2018     
ZTFLH:  TQ150.1  
Fund: National Key Basic Research and Development Program(2015CB057304);Science Challenge Project(JCKY2016212A506-0107);Science Challenge Project(JCKY2016212A506-0103);Science Fund for Creative Research Groups of NSFC(51621064)
Corresponding Authors:  Zhuji JIN     E-mail:  kimsg@dlut.edu.cn

Cite this article: 

Yuan SHI,Zhuji JIN,Guannan JIANG,Zuotao LIU,Zhongzheng ZHOU,Zebei WANG. Electrochemical Corrosion of YG15 Cemented Carbide. Journal of Chinese Society for Corrosion and protection, 2019, 39(3): 253-259.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.100     OR     https://www.jcscp.org/EN/Y2019/V39/I3/253

Fig.1  
Fig.2  
Fig.3  
Fig.4  
Fig.5  
Potential / VAg/AgClWCo
072.189.99
173.591.36
270.80---
371.13---
471.86---
Table 1  
Fig.6  
Fig.7  
[1] Padmakumar M, Guruprasath J, Achuthan P, et al. Investigation of phase structure of cobalt and its effect in WC-Co cemented carbides before and after deep cryogenic treatment [J]. Int. J. Refract. Met. Hard Mater., 2018, 74: 87
[2] Gao X J, Man P, Wang H D, et al. Development of WC cement preparation technology [J]. Bull. Chin. Ceram. Soc., 2013, 32: 71
[2] (高晓菊, 满鹏, 汪海东, .等. 碳化钨硬质合金制备技术研究进展 [J]. 硅酸盐通报, 2013, 32: 71)
[3] Li H S, Niu S, Zhang Q L, et al. Investigation of material removal in inner-jet electrochemical grinding of GH4169 alloy [J]. Sci. Rep., 2017, 7: 3482
[4] Xu Y, Gan W M, Zhu P X. Experimental research on NC electrochemical grinding for ruled surface of integral impeller [J]. Appl. Mech. Mater., 2012, 271/272: 394
[5] Tehrani A F, Atkinson J. Overcut in pulsed electrochemical grinding [J]. Proc. Inst. Mech. Eng., 2000, 214B: 259
[6] He Q X, Jin Z J, Jiang G N, et al. The investigation on electrochemical denatured layer of 304 stainless steel [J]. Mater. Manuf. Process., 2018, 33: 1661
[7] Ye E K, Qu N S, Zhu D. Experimental investigation on electrochemical grinding of GH4169 [J]. Mach. Build. Autom., 2016, 45(6): 24
[7] (叶而康, 曲宁松, 朱荻. GH4169电解磨削加工试验研究 [J]. 机械制造与自动化, 2016, 45(6): 24)
[8] Zheng K L. Study on CNC electrolysis grinding of cobalt-base talide corrugated roller [J]. Manuf. Technol. Mach. Tool, 2007, (7): 108
[8] (郑开陆. 钴基碳化钨瓦楞辊数控电解磨削的研究 [J]. 制造技术与机床, 2007, (7): 108)
[9] Qu N S, Zhang Q L, Fang X L, et al. Experimental investigation on electrochemical grinding of inconel 718 [J]. Procedia CIRP, 2015, 35: 16
[10] Sun Y A, Li X H, Zhang Y Q. Electrolytic grinding for hard metals [J]. Bearing, 2002, (2): 18
[10] (孙永安, 李县辉, 张永乾. 硬质合金的电解磨削加工 [J]. 轴承, 2002, (2): 18)
[11] Pang G B, Xin K K, Cai X, et al. Experimental study of surface topography characteristics of YT15 cemented carbide by electrochemical machining [J]. J. Dalian Univ. Technol., 2017, 57: 367
[11] (庞桂兵, 辛开开, 蔡晓等. 电化学加工YT15硬质合金表面形貌特征实验研究 [J]. 大连理工大学学报, 2017, 57: 367)
[12] Qin Q, Fang Y L, Li J X, et al. Analysis of influencing factors on electrochemical corrosion behavior of cemented carbides [J]. Rare Met. Cement Carbides, 2017, 45(5): 74
[12] (秦琴, 方云龙, 李京筱等. 硬质合金电化学腐蚀行为的影响因素分析 [J]. 稀有金属与硬质合金, 2017, 45(5): 74)
[13] Wan Q L, Zhang L, Ke R X, et al. Effect of anions on electrochemical corrosion behavior and corrosion mechanism of WC-Co cemented carbide [J]. China Tungsten Ind., 2015, 30(1): 61
[13] (万庆磊, 张立, 柯荣现等. 阴离子介质对WC-10Co合金电化学腐蚀行为的影响 [J]. 中国钨业, 2015, 30(1): 61)
[14] Natsu W, Kurahata D. Observation of workpiece surface in ECM process of WC alloy micro-pin with bipolar pulses [J]. Int. J. Electr. Mach., 2016, 21: 31
[15] Kellner F J J, Hildebrand H, Virtanen S. Effect of WC grain size on the corrosion behavior of WC-Co based hardmetals in alkaline solutions [J]. Int. J. Refract. Met. Hard Mater., 2009, 27: 806
[16] Hochstrasser S, Mueller Y, Latkoczy C, et al. Analytical characterization of the corrosion mechanisms of WC-Co by electrochemical methods and inductively coupled plasma mass spectroscopy [J]. Corros. Sci., 2007, 49: 2002
[17] Levinger R, Malkin S. Electrochemical grinding of WC-Co cemented carbides [J]. J. Eng. Ind., 1979, 101: 285
[18] Goto A, Nakata A, Saito N. Study on electrochemical machining of sintered carbide [J]. Procedia CIRP, 2016, 42: 402
[19] Li D. Electrochemical Theory [M]. 3rd Ed. Beijing: Beihang University Press, 2008: 278
[19] (李荻. 电化学原理 [M]. 第3版. 北京: 北京航空航天大学出版社, 2008: 278)
[20] Gui Y, Gao Y. Progress of research on performance of passive films of stainless steels [J]. Spec. Steel, 2011, 32(3): 20
[20] (桂艳, 高岩. 不锈钢表面钝化膜特性的研究进展 [J]. 特殊钢, 2011, 32(3): 20)
[21] Biloen P, Pott G T. X-ray photoelectron spectroscopy study of supported tungsten oxide [J]. J. Catal., 1973, 30: 169
[22] Katrib A, Hemming F, Wehrer P, et al. The multi-surface structure and catalytic properties of partially reduced WO3, WO2 and WC+O2 or W+O2 as characterized by XPS [J]. J. Electron Spectrosc. Relat. Phenom. 1995, 76: 195
[23] Zhang J X, Zhang G Z, Zhang L P, et al. XPS study on WC bulk in-situ synthesized through directly carbonized tungsten oxide by SPS [J]. Rare Met. Mater. Eng., 2006, 35: 937
[23] (褚张久兴, 张国珍, 张利平等. 氧化钨/碳SPS原位合成WC硬质合金的XPS研究 [J]. 稀有金属材料与工程, 2006, 35: 937)
[24] Li J P, Ding C G, Li Y, et al. Effects of sintering temperatures on performance of WC-15%Co coarse-grained cemented carbide by sinter-HIP [J]. Cement Carbide, 2016, 33: 33
[24] (李金普, 丁存光, 李一等. 低压烧结温度对YG15粗晶硬质合金性能的影响 [J]. 硬质合金, 2016, 33: 33)
[25] Cao F G. Electrochemical Machining [M]. Beijing: Chemical Industry Press, 2014: 104
[25] (曹凤国. 电化学加工 [M]. 北京: 化学工业出版社, 2014: 104)
[26] Chen K H, Zou D, Li Y X. Advance in the study of passivation and pseudopassivation behaviours of cemented carbides [J]. Cement Carbide, 2007, 24: 181
[26] (陈康华, 邹丹, 李詠侠. 硬质合金钝化与伪钝化行为的研究进展 [J]. 硬质合金, 2007, 24: 181)
[27] Qun L. Electrolytic grinding of WC-Co cemented carbide [J]. Shanghai Machine, 1965, (11): 9
[27] (群力. 电解磨削碳化钨-钴型硬质合金 [J]. 上海机械, 1965, (11): 9)
[1] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[2] Kai WANG, Yaoyong YI, Qinghua LU, Jianglong YI, Zexin JIANG, Jinjun MA, Yu ZHANG. Effect of Peak Temperatures on Corrosion Behavior of Thermal Simulated Narrow-gap Weld Q690 High Strength Steel[J]. 中国腐蚀与防护学报, 2018, 38(5): 447-454.
[3] Boqiang SONG,Xu CHEN,Guiyang MA,Rui LIU. Effect of SRB on Corrosion Behavior of X70 Pipeline Steel in Near-neutral pH Solution[J]. 中国腐蚀与防护学报, 2016, 36(3): 212-218.
[4] Jiamei WANG,Hui LU,Zhengang DUAN,Lefu ZHANG,Fanjiang MENG,Xuelian XU. Effect of Temperature on Electrochemical Behavior of Alloy 690 in Simulated PWR Secondary Circuit Water[J]. 中国腐蚀与防护学报, 2016, 36(2): 113-120.
[5] Ning ZHANG,Huyuan SUN,Lijuan SUN,Shuan LIU. Electrochemical Corrosion Behavior of X80 Pipeline Steel in a Simulated Soil Solution for Coastal Tidal Flat Wetland[J]. 中国腐蚀与防护学报, 2015, 35(4): 339-344.
[6] LIANG Ping,WANG Ying. Electrochemical Behavior of X80 Steel Covered by A Rust Layer Formed after Short-term Corrosion[J]. 中国腐蚀与防护学报, 2013, 33(5): 371-376.
[7] ZHANG Yu, WANG Jun, SHI Shukun, WANG Yuansheng. EFFECT OF AGING ON ELECTROCHEMICAL CORROSION BEHAVIOR OF 2205 DUPLEX STAINLESS STEEL IN SULFUR ENVIRONMENTS[J]. 中国腐蚀与防护学报, 2012, 32(6): 496-500.
[8] Yanchun Lou; Fangxin Zhao; Bo Yu; Jingcheng Wang; Yunlong Xiong. ELECTROCHEMICAL CORROSION AND CAVITATION EROSION BEHAVIOR OF Cr-Ni HYDRAULEC TURBINE MATERIAL[J]. 中国腐蚀与防护学报, 2005, 25(5): 312-316 .
[9] Gongtai Qi; Min Wen. PREPARATION AND PROPERTIES OF TiO2 COATINGS FOR 45# STEEL[J]. 中国腐蚀与防护学报, 2005, 25(1): 57-60 .
[10] . GRAIN-SIZE EFFECT ON THE ELECTROCHEMICAL CORROSION OF SURFACE NANOCRYSTALLIZED LOW CARBON STEEL[J]. 中国腐蚀与防护学报, 2001, 21(4): 215-219 .
No Suggested Reading articles found!