Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (3): 235-244    DOI: 10.11902/1005.4537.2018.079
Current Issue | Archive | Adv Search |
Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating
Guirong WANG1,2,Yawei SHAO1(),Yanqiu WANG1,Guozhe MENG1,Bin LIU1
1. College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
2. Aviation Industry Chengdu Aircraft Industry (Group) Co., LTD., Chengdu 610092, China
Download:  HTML  PDF(21187KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The combined effectiveness of the cathodic protection and epoxy coating for a steel, which is newly developed for offshore platform, as well as the cathodic delamination behavior of the epoxy coating with damages in artificial seawater at room temperature were examined by means of electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM), energy dispersive spectrum (EDS) and X-ray diffractometer (XRD). Results indicated that as the potential goes down within the selected range of protection potentials of -750~-1050 mV (vs SEC), the delamination area of the coatings increases. The ordinary protection potential -750 mV (vs SEC) for epoxy coatings is no longer applicable for the damaged coatings, while the cathode potential -1050 mV leads to serious hydrogen evolution in the damaged area, resulting in the integrity destruction of the deposited film there, leading to the seriously interfacial alkalization and therewith, the cathodic delamination area increases. However, the protection potential of -850 or -950 mV can inhibit the corrosion of metal on the damaged site of coating. The deposited film formed under -950 mV on the damaged site is composed of Mg(OH)2 and CaCO3 which is of integrity and dense, leading to the best protective effect on the substrate.

Key words:  epoxy coating      cathodic protection potential      damaged area      cathodic delamination     
Received:  03 June 2018     
ZTFLH:  TG174.461  
Fund: National Key Research Program of Ministry of Science and Technology(2016YFB0300604)
Corresponding Authors:  Yawei SHAO     E-mail:  shaoyawei@hrbeu.edu.cn

Cite this article: 

Guirong WANG,Yawei SHAO,Yanqiu WANG,Guozhe MENG,Bin LIU. Effect of Applied Cathodic Protection Potential on Cathodic Delamination of Damaged Epoxy Coating. Journal of Chinese Society for Corrosion and protection, 2019, 39(3): 235-244.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.079     OR     https://www.jcscp.org/EN/Y2019/V39/I3/235

Fig.1  
Fig.2  
Potential (vs SCE)mVNumber of blisterMaximum distance of blisters to the edge of the leak /mmMinimum distance of blisters to the edge of the leak /mm
OCP0------
-75042.00.5
-85053.20.3
-95053.30.8
-105084.50.3
Table 1  
Fig.3  
Potential (vs SCE) /mVMaximum delamination distance from damaged edge / mmMinimum delamination distance from damaged edge / mmDelamination areamm2
OCP4.23.454
-7506.05.1117
-8507.26.3169
-9507.56.9183
-10508.57.8243
Table 2  
Fig.4  
AreaFeMgCaAlSiCrMn
A59.011.472.135.612.870.761.05
B1.50.782.361.911.240.243.01
Table 3  
Fig.5  
Fig.6  
Fig.7  
Fig.8  
Fig.9  
Fig.10  
Fig.11  
[1] Wang F Y, Wang H. Reaearch on the status and infrastructures of offshore wind farm all over the world [J]. Shipbuild. China, 2011, 52(S2): 587
[1] (王风云, 王辉. 国内外海上风电场现状及其基础设施研究 [J]. 中国造船, 2011, 52(增刊2): 587)
[2] Xu L K, Ma L, Xing S H, et al. Review on cathodic protection for marine structures [J]. Mater. China, 2014, 33: 106
[2] (许立坤, 马力, 邢少华等. 海洋工程阴极保护技术发展评述 [J]. 中国材料进展, 2014, 33: 106)
[3] Li X, Bailey S I. A laboratory technique for evaluating marine splash zone corrosion [J]. Adv. Mater. Res., 2012, 347-353: 3345
[4] Bi H C, Sykes J. An investigation of cathodic oxygen reduction beneath an intact organic coating on mild steel and its relevance to cathodic disbonding [J]. Prog. Org. Coat., 2015, 87: 83
[5] Shi W, Lyon S B. Investigation using localised SVET into protection at defects in epoxy coated mild steel under intermittent cathodic protection simulating inter-tidal and splash zones [J]. Prog. Org. Coat., 2017, 102: 66
[6] Eltai E O, Scantlebury J D, Koroleva E V. Protective properties of intact unpigmented epoxy coated mild steel under cathodic protection [J]. Prog. Org. Coat., 2012, 73: 8
[7] Li Y N. The research of the cathodic ptotection effect on broken organic coating [D]. Qingdao. Ocean University of China, 2011
[7] (李玉楠. 阴极保护对破损有机涂层防护作用的研究 [D]. 青岛: 中国海洋大学, 2011)
[8] Zhang L. The influence of cathodic polarization on performance of Zinc-rich coatings on steel [D]. Beijing: Beijing University of Chemical Technology, 2013
[8] (张丽. 外加电流阴极极化下环氧富锌涂层的失效行为研究 [D]. 北京: 北京化工大学, 2013)
[9] Pan D W, Gao X X, Ma L, et al. Cathodic protection criteria of high strength steel in simulated deep-sea environment [J]. Corros. Prot., 2016, 37: 225
[9] (潘大伟, 高心心, 马力等. 模拟深海环境中高强钢的阴极保护准则 [J]. 腐蚀与防护, 2016, 37: 225)
[10] Zhang M S, Yin P F, Ma C J. The impressed current cathodic protection technology of jacket platform [J]. Total Corros. Control, 2013, 27(3): 20
[10] (张脉松, 尹鹏飞, 马长江. 海洋平台外加电流阴极保护技术 [J]. 全面腐蚀控制, 2013, 27(3): 20)
[11] Yan M C, Xu J, Yu L B, et al. EIS analysis on stress corrosion initiation of pipeline steel under disbonded coating in near-neutral pH simulated soil electrolyte [J]. Corros. Sci., 2016, 110: 23
[12] Huang Y C. Electrochemical protection and its application Ⅱ The principle of cathodic protection and its application [J]. Corros. Prot., 2000, 21: 191
[12] (黄永昌. 电化学保护技术及其应用 第二讲 阴极保护原理及其应用 [J]. 腐蚀与防护, 2000, 21: 191)
[13] Le Thu Q, Takenouti H, Touzain S. EIS characterization of thick flawed organic coatings aged under cathodic protection in seawater [J]. Electrochim. Acta, 2006, 51: 2491
[14] Touzain S, Le Thu Q, Bonnet G. Evaluation of thick organic coatings degradation in seawater using cathodic protection and thermally accelerated tests [J]. Prog. Org. Coat., 2005, 52: 311
[15] Funke W. Toward a unified view of the mechanism responsible for paint defects by metallic corrosion [J]. Ind. Eng. Chem. Prod. Res. Dev., 1985, 24: 343
[16] S?rensen P A, Dam-Johansen K, Weinell C E, et al. Cathodic delamination: Quantification of ionic transport rates along coating–steel interfaces [J]. Prog. Org. Coat., 2010, 67: 107
[17] Li C J, Du M, Li Y, et al. The influences of protection potentials on the formation of calcareous deposits in dynamic seawater [J]. Periodical Ocean Univ. China, 2011, 41(Z2): 149
[17] (李成杰, 杜敏, 李妍等. 动态海水中保护电位对钙质沉积层形成的影响 [J]. 中国海洋大学学报 (自然科学版), 2011, 41(Z2): 149)
[18] Li C J, Du M. Research and development of cathodic protection for steels in deep seawater [J]. J. Chin. Soc. Corros. Prot., 2013, 33: 10
[18] (李成杰, 杜敏. 深海钢铁材料的阴极保护技术研究及发展 [J]. 中国腐蚀与防护学报, 2013, 33: 10)
[19] Rousseau C, Baraud F, Leleyter L, et al. Kaolinite influence on calcareous deposit formation [J]. Electrochim. Acta, 2009, 55: 196
[20] Wroblowa H S, Qaderi S B. Mechanism and kinetics of oxygen reduction on steel [J]. J. Electroanal. Chem. Interfacial Electrochem., 1990, 279: 231
[21] Barchiche C, Deslouis C, Festy D, et al. Characterization of calcareous deposits in artificial seawater by impedance techniques: 3—Deposit of CaCO3 in the presence of Mg (II) [J]. Electrochim. Acta, 2003, 48: 1645
[22] Gutjahr A, Dabringhaus H, Lacmann R. Studies of the growth and dissolution kinetics of the CaCO3 polymorphs calcite and aragonite II. The influence of divalent cation additives on the growth and dissolution rates [J]. J. Cryst. Growth, 1996, 158: 310
[1] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[2] ZHAO Shuyan,TONG Xinhong,LIU Fuchun,WENG Jinyu,HAN En-Hou,LI Xiaohui,YANG Lin. Corrosion Resistance of Three Zinc-rich Epoxy Coatings[J]. 中国腐蚀与防护学报, 2019, 39(6): 563-570.
[3] WANG Guirong,ZHENG Hongpeng,CAI Huayang,SHAO Yawei,WANG Yanqiu,MENG Guozhe,LIU Bin. Failure Process of Epoxy Coating Subjected Test of Alternating Immersion in Artificial Seawater and Dry in Air[J]. 中国腐蚀与防护学报, 2019, 39(6): 571-580.
[4] Liang CHANG, Chao SHI, Yawei SHAO, Yanqiu WANG, Bin LIU, Guozhe MENG. Effect of Phytic Acid Conversion Film on Corrosion Resistance of Epoxy Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 265-273.
[5] Bei QIAN, Chengbao LIU, Zuwei SONG, Junfeng REN. Anticorrosion Performance of Epoxy Coating Modified with Nanocontainers[J]. 中国腐蚀与防护学报, 2018, 38(2): 133-139.
[6] Yinze ZUO, Liang CHEN, Qing FENG, Yanmin GAO. Effect of Self-assembly Film of PFOA/Silane Coupling Agent on Properties of Epoxy Rust-tolerant Coating Applied on Q235 Carbon Steel[J]. 中国腐蚀与防护学报, 2017, 37(6): 554-560.
[7] Hongtao ZHAO, Weizhong LU, Jing LI, Yugui ZHENG. Degradation Behavior of Solvent-free Epoxy Coatings in Simulated Flowing Sea Water with Sand by Different Flow Rates[J]. 中国腐蚀与防护学报, 2017, 37(4): 329-340.
[8] Hongyang GAO,Wei WANG,Likun XU,Li MA,Zhangji YE,Xiangbo LI. Degradation Behavior of a Modified Epoxy Coating in Simulated Deep-sea Environment[J]. 中国腐蚀与防护学报, 2017, 37(3): 247-263.
[9] Juan ZHANG,Ziqiang LIU,Tao FENG,Shifeng WEN,Ruiqing CHEN. Effect of Carbon Nanotube on Properties of Epoxy Coating[J]. 中国腐蚀与防护学报, 2017, 37(3): 254-260.
[10] Hongtao ZHAO,Weizhong LU,Jing LI,Yugui ZHENG. Electrochemical Behavior of Solvent-free Epoxy Coating during Erosion in Simulated Flowing Sea Water[J]. 中国腐蚀与防护学报, 2016, 36(4): 295-305.
[11] Shan ZHANG,Lina ZHOU,Lu JIAN,Xu WANG. Preparation and Corrosion Resistance of PANI/TiO2/Epoxy Coatings[J]. 中国腐蚀与防护学报, 2016, 36(1): 59-66.
[12] Wei SUN, Guilai YIN, Fuchun LIU, Nan TANG, En-Hou HAN, Junbiao WAN, Wei KE, Jingwei DENG. Influence of Corrosion Inhibitor Carriered Nano-SiO2 on Corrosion Resistance of Epoxy Coating[J]. 中国腐蚀与防护学报, 2015, 35(5): 447-454.
[13] Bing ZHOU, Nan TANG, Yingjun ZHANG, Liang MAO, Yanqiu WANG, Yawei SHAO, Guozhe MENG. A High Adhesive Epoxy Varnish Coating on Galvanized Steel[J]. 中国腐蚀与防护学报, 2015, 35(5): 455-460.
[14] LIU Ying, LIU Li, LI Ying, WANG Fuhui. EFFECT OF HIGH HYDROSTATIC PRESSURE ON DIFFUSING BEHAVIOR OF WATER THROUGH EPOXY COATING[J]. 中国腐蚀与防护学报, 2012, 32(3): 203-209.
[15] SHI Qiumei, SHAO Yawei, ZHANG Tao, MENG Guozhe, CHEN Qihao. PROTECTION DIMENSION OF SCRATCHED ZINC PHOSPHATE/EPOXY COATING[J]. 中国腐蚀与防护学报, 2011, 31(5): 389-394.
No Suggested Reading articles found!