Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (3): 227-234    DOI: 10.11902/1005.4537.2018.068
Current Issue | Archive | Adv Search |
Thermodynamic and Dynamic Analyses of Microbiologically Assisted Cracking
Tangqing WU1,2,Zhaofen ZHOU1,2,Xinming WANG1,2,Dechuang ZHANG2,Fucheng YIN1,2,Cheng SUN3()
1. Key Laboratory of Materials Design and Preparation Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China
2. School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
3. Environmental Corrosion Center, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(1275KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Microbiologically influenced corrosion (MIC) is one of the most common corrosion types of buried pipelines. Many investigations in field survey and laboratory simulation studies have verified that microorganisms in soil and applied stresses can synergistically participate in and significantly affect the crack initiation and propagation of pipeline steels. This phenomenon was named as “microbiologically assisted cracking (MAC)”. Relevant mechanisms, such as pitting mechanism, hydrogen damage mechanism, have been proposed to illuminate this phenomenon. However, there is still a lack of thermodynamic interpretation of MAC and the dynamic analysis deriving from thermodynamic interpretation. In the paper, the thermodynamic interpretation and the dynamic analysis for sulfate reducing bacteria (SRB) /nitrate-reducing bacteria (NRB) -assisted cracking were proposed based on the mechano-chemical interaction theory, bioenergetics and corrosion electrochemistry. The thermodynamic results showed that under the combined actions of SRB/NRB and external stress, the changes of Gibbs free energy of the corrosion reactions decrease and the releasing energies increase accordingly, revealing the stronger corrosion tendency in thermodynamics. For Fe-based alloys, NRB corrosion and NRB-assisted cracking are the more thermodynamically favorable processes, as compared to SRB corrosion and SRB-assisted cracking, respectively. The dynamic results showed that the corrosion rate and the crack propagation rate increase under the combined actions of applied stresses and microorganisms.

Key words:  thermodynamics      microbiologically induced corrosion      sulfate-reducing bacteria      nitrate reducing bacteria     
Received:  22 May 2018     
ZTFLH:  TG172.4  
Fund: National Natural Science Foundation of China(51601164);National Natural Science Foundation of China(51871228);Natural Science Foundation of Hunan Province(2019JJ30023);China Postdoctoral Science Foundation(2018T110836)
Corresponding Authors:  Cheng SUN     E-mail:  chengsun@imr.ac.cn

Cite this article: 

Tangqing WU,Zhaofen ZHOU,Xinming WANG,Dechuang ZHANG,Fucheng YIN,Cheng SUN. Thermodynamic and Dynamic Analyses of Microbiologically Assisted Cracking. Journal of Chinese Society for Corrosion and protection, 2019, 39(3): 227-234.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.068     OR     https://www.jcscp.org/EN/Y2019/V39/I3/227

Fig.1  
Fig.2  
[1] Wu T Q, Yan M C, Zeng D C, et al. Microbiologically induced corrosion of X80 pipeline steel in a near-neutral pH soil solution [J]. Acta Metall. Sin. (Engl. Lett.), 2015, 28: 93
[2] Ye S, Moradi M, Song Z L, et al. Inhibition effect of Pseudoalteromonas Piscicida on corrosion of Q235 carbon steel in simulated flowing seawater [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 174
[2] (叶赛, Moradi M, 宋振纶等. 杀鱼假交替单胞菌对模拟海水流动环境下Q235碳钢腐蚀的抑制行为 [J]. 中国腐蚀与防护学报, 2018, 38: 174)
[3] Chen J N, Wu J J, Wang P, et al. Effect of Desulfovibrio sp. and Vibrio Alginolyticus on corrosion behavior of 907 steel in seawater [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 402
[3] (陈菊娜, 吴佳佳, 王鹏等. 脱硫弧菌和溶藻弧菌对船体结构材料907钢海水腐蚀行为的影响研究 [J]. 中国腐蚀与防护学报, 2017, 37: 402)
[4] Liu H W, Liu H F. Research progress of corrosion of steels induced by iron oxidizing bacteria [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 195
[4] (刘宏伟, 刘宏芳. 铁氧化菌引起的钢铁材料腐蚀研究进展 [J]. 中国腐蚀与防护学报, 2017, 37: 195)
[5] Guan F, Zhai X F, Duan J Z, et al. Progress on influence of cathodic polarization on sulfate-reducing bacteria induced corrosion [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 1
[5] (管方, 翟晓凡, 段继周等. 阴极极化对硫酸盐还原菌腐蚀影响的研究进展 [J]. 中国腐蚀与防护学报, 2018, 38: 1)
[6] National Transportation Safety Board. Pipeline accident report: Natural gas pipeline rupture and fire near Carlsbad, New Mexico [R]. Washington, D.C.National Transportation Safety Board, 2003
[7] Jacobson G A. Corrosion at prudhoe bay: A lesson on the line [J]. Mater. Perform., 2007, 46: 26
[8] Kholodenko V P, Jigletsova S K, Chugunov V A, et al. Chemicomicrobiological diagnostics of stress corrosion cracking of trunk pipelines [J]. Appl. Biochem. Microbiol., 2000, 36: 594
[9] Abedi S S, Abdolmaleki A, Adibi N. Failure analysis of SCC and SRB induced cracking of a transmission oil products pipeline [J]. Eng. Fail. Anal., 2007, 14: 250
[10] Wu T Q, Sun C, Xu J, et al. A study on bacteria-assisted cracking of X80 pipeline steel in soil environment [J]. Corros. Eng., Sci. Technol., 2018, 53: 265
[11] Javaherdashti R, Singh Raman R K, Panter C, et al. Microbiologically assisted stress corrosion cracking of carbon steel in mixed and pure cultures of sulfate reducing bacteria [J]. Int. Biodeterior. Biodegrad., 2006, 58: 27
[12] Raman R K S, Javaherdashti R, Panter C, et al. Hydrogen embrittlement of a low carbon steel during slow strain testing in chloride solutions containing sulphate reducing bacteria [J]. Mater. Sci. Technol., 2005, 21: 1094
[13] Dom?alicki P, Lunarska E, Birn J. Effect of cathodic polarization and sulfate reducing bacteria on mechanical properties of different steels in synthetic sea water [J]. Mater. Corros., 2007, 58: 413
[14] Wu T Q, Xu J, Yan M C, et al. Synergistic effect of sulfate-reducing bacteria and elastic stress on corrosion of X80 steel in soil solution [J]. Corros. Sci., 2014, 83: 38
[15] Stipani?ev M, Rosas O, Basseguy R, et al. Electrochemical and fractographic analysis of microbiologically assisted stress corrosion cracking of carbon steel [J]. Corros. Sci., 2014, 80: 60
[16] Robinson M J, Kilgallon P J. Hydrogen embrittlement of cathodically protected high-strength, low-alloy steels exposed to sulfate-reducing bacteria [J]. Corrosion, 1994, 50: 626
[17] Javaherdashti R. Impact of sulphate-reducing bacteria on the performance of engineering materials [J]. Appl. Microbiol. Biotechnol., 2011, 91: 1507
[18] Javaherdashti R, Nwaoha C, Ebenso E E. Fuzzy prediction of corrosion resistance of duplex stainless steel to biotic iron reducing bacteria and abiotic synthetic seawater environments: A phenomenological approach towards a multidisciplinary concept [J]. Int. J. Electrochem. Sci., 2012, 7: 12573
[19] Vaidya R U, Butt D P, Hersman L E, et al. Effect of microbiologically influenced corrosion on the tensile stress-strain response of aluminum and alumina-particle reinforced aluminum composite [J]. Corrosion, 1997, 53: 136
[20] Wu T Q, Yan M C, Zeng D C, et al. Stress corrosion cracking of X80 steel in the presence of sulfate-reducing bacteria [J]. J. Mater. Sci. Technol., 2015, 31: 413
[21] Wu T Q, Xu J, Sun C, et al. Microbiological corrosion of pipeline steel under yield stress in soil environment [J]. Corros. Sci., 2014, 88: 291
[22] Reguera G, McCarthy K D, Mehta T, et al. Extracellular electron transfer via microbial nanowires [J]. Nature, 2005, 435: 1098
[23] Yu L, Duan J Z, Du X Q, et al. Accelerated anaerobic corrosion of electroactive sulfate-reducing bacteria by electrochemical impedance spectroscopy and chronoamperometry [J]. Electrochem. Commun., 2013, 26: 101
[24] Sheng X X, Ting Y P, Pehkonen S O. The influence of sulphate-reducing bacteria biofilm on the corrosion of stainless steel AISI 316 [J]. Corros. Sci., 2007, 49: 2159
[25] Iverson W P. Corrosion of iron and formation of iron phosphide by Desulfovibrio desulfuricans [J]. Nature, 1968, 217: 1265
[26] Wu T Q, Yan M C, Zeng D C, et al. Hydrogen permeation of X80 steel with superficial stress in the presence of sulfate-reducing bacteria [J]. Corros. Sci., 2015, 91: 86
[27] Robinson M J, Kilgallon P J. A review of the effects of sulphate reducing bacteria in the marine environment on the corrosion fatigue and hydrogen embrittlement of high strength steels [R]. Health and Safety Executive - Offshore Technology Report, 1998
[28] Edyvean R G J. Hydrogen sulphide: a corrosive metabolite [J]. Int. Biodeter., 1991, 27: 109
[29] Gee R, Chen Z Y. Hydrogen embrittlement during the corrosion of steel by wet elemental sulphur [J]. Corros. Sci., 1995, 37: 2003
[30] Zucchi F, Grassi V, Monticelli C, et al. Hydrogen embrittlement of duplex stainless steel under cathodic protection in acidic artificial sea water in the presence of sulphide ions [J]. Corros. Sci., 2006, 48: 522
[31] Eadie R L, Szklarz K E, Sutherby R L. Corrosion fatigue and near-neutral pH stress corrosion cracking of pipeline steel and the effect of hydrogen sulfide [J]. Corrosion, 2005, 61: 167
[32] Sowards J W, Williamson C H D, Weeks T S, et al. The effect of Acetobacter sp. and a sulfate-reducing bacterial consortium from ethanol fuel environments on fatigue crack propagation in pipeline and storage tank steels [J]. Corros. Sci., 2014, 79: 128
[33] Serednyts'kyi Y A. Mechanism of corrosion of 40KH steel near a crack tip in the presence of sulfate-reducing bacteria [J]. Mater. Sci., 1997, 33: 29
[34] Wu T Q, Sun C, Ke W. Interpreting microbiologically assisted cracking with Ee-pH diagram [J]. Bioelectrochemistry, 2018, 120: 57
[35] Cao C N. Principles of Electrochemistry of Corrosion [M]. 3rd Ed. Beijing: Chemical Industry Press, 2008: 158
[35] (曹楚南. 腐蚀电化学原理 [M]. 第3版. 北京: 化学工业出版社, 2008: 158)
[36] Yu L B, Yan M C, Wang B B, et al. Microbial corrosion of Q235 steel in acidic red soil environment [J]. J. Chin. Soc. Corros. Prot., 2018, 38: 10
[36] (于利宝, 闫茂成, 王彬彬等. 酸性土壤环境中Q235钢的微生物腐蚀行为 [J]. 中国腐蚀与防护学报, 2018, 38: 10)
[37] Teng Y, Chen X, He C, et al. Effect of microstructure on corrosion behavior of X70 steel in 3.5%NaCl solution with SRB [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 168
[37] (滕彧, 陈旭, 何川等. 显微组织对X70钢在含有硫酸盐还原菌的3.5%NaCl溶液中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 168)
[38] Yuan S J, Liang B, Zhao Y, et al. Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria [J]. Corros. Sci., 2013, 74: 353
[39] Sherar B W A, Power I M, Keech P G, et al. Characterizing the effect of carbon steel exposure in sulfide containing solutions to microbially induced corrosion [J]. Corros. Sci., 2011, 53: 955
[40] Venzlaff H, Enning D, Srinivasan J, et al. Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria [J]. Corros. Sci., 2013, 66: 88
[41] Xu D K, Gu T Y. Carbon source starvation triggered more aggressive corrosion against carbon steel by the Desulfovibrio vulgaris biofilm [J]. Int. Biodeterior. Biodegrad., 2014, 91: 74
[42] Zhang P Y, Xu D K, Li Y C, et al. Electron mediators accelerate the microbiologically influenced corrosion of 304 stainless steel by the Desulfovibrio vulgaris biofilm [J]. Bioelectrochemistry, 2015, 101: 14
[43] Xu D K, Li Y C, Song F M, et al. Laboratory investigation of microbiologically influenced corrosion of C1018 carbon steel by nitrate reducing bacterium Bacillus licheniformis [J]. Corros. Sci., 2013, 77: 385
[44] Mei M, Zheng H A, Chen H D, et al. Effect of sulfate reducing bacteria on corrosion behavior of Cu in circulation cooling water system [J]. J. Chin. Soc. Corros. Prot., 2017, 37: 533
[44] (梅朦, 郑红艾, 陈惠达等. 硫酸盐还原菌对Cu在循环冷却水中腐蚀行为的影响 [J]. 中国腐蚀与防护学报, 2017, 37: 533)
[45] Gutman E M. Thermodynamics of the mechanico-chemical effect: II. The range of operation of nonlinear laws [J]. Sov. Mater. Sci., 1967, 3: 293
[46] Gutman E M. Thermodynamics of the mechanico-chemical effect: I. Derivation of basic equations. Nature of the effect [J]. Sov. Mater. Sci., 1968, 3: 190
[47] Gutman E M, translated by Jin S. Mechanochemistry and Corrosion Prevention of Metals [M]. Beijing: Science Press, 1989
[47] Gutman E M著, 金石译. 金属力学化学与腐蚀防护 [M]. 北京: 科学出版社, 1989
[48] Wu T Q, Yan M C, Xu J, et al. Mechano-chemical effect of pipeline steel in microbiological corrosion [J]. Corros. Sci., 2016, 108: 160
[49] Al-Nabulsi K M, Al-Abbas F M, Rizk T Y, et al. Microbiologically assisted stress corrosion cracking in the presence of nitrate reducing bacteria [J]. Eng. Fail. Anal., 2015, 58: 165
[50] Bogkris J O M, Beck W, Genshaw M A, et al. The effect of stress on the chemical potential of hydrogen in iron and steel [J]. Acta Metall., 1971, 19: 1209
[51] Xu L Y, Cheng Y F. Corrosion of X100 pipeline steel under plastic strain in a neutral pH bicarbonate solution [J]. Corros. Sci., 2012, 64: 145
[52] Sharkeev Y P, Girsova N V, Ryabchikov A I, et al. Dislocation structure in coarse-grained copper after ion implantation [J]. Nucl. Instrum. Methods Phys. Res. Sect. B-Beam Interact. Mater. Atoms, 1995, 106: 532
[53] Eiras J A. Influence of plastic deformation on the velocity and ultrasonic attenuation of copper single crystals [J]. J. Alloy. Compd., 2000, 310: 68
[54] Li D. Principles of Electrochemistry [M]. 3rd Ed. Beijing: Beijing University of Aeronautics and Astronautics Press, 2008: 212
[54] (李荻. 电化学原理 [M]. 第3版. 北京: 北京航空航天大学出版社, 2008: 212)
[55] Parkins R N. Current topics in corrosion: Factors influencing stress corrosion crack growth kinetics [J]. Corrosion, 1987, 43: 130
[1] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] CHEN Xu, LI Shuaibing, ZHENG Zhongshuo, XIAO Jibo, MING Nanxi, HE Chuan. Microbial Corrosion Behavior of X70 Pipeline Steel in an Artificial Solution for Simulation of Soil Corrosivityat Daqing Area[J]. 中国腐蚀与防护学报, 2020, 40(2): 175-181.
[3] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[4] QI Peng, WAN Yi, ZENG Yan, ZHENG Laibao, ZHANG Dun. Rapid Detection Methods for Sulfate-reducing Bacteria in Marine Environments[J]. 中国腐蚀与防护学报, 2019, 39(5): 387-394.
[5] Xin LI,Xu CHEN,Wuqi SONG,Jiaxing YANG,Ming WU. Effect of pH Value on Microbial Corrosion Behavior of X70 Steel in a Sea Mud Extract Simulated Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[6] LI Kejuan,ZHENG Bijuan,CHEN Bi,LIU Hongfang. Effect of Magnetic Field on Microbiologically-influenced Corrosion Behavior of Q235 Steel[J]. 中国腐蚀与防护学报, 2013, 33(6): 463-469.
[7] CHAI Ke,LUO Qi,WU Jinyi. Effect of Pseudomonas on Electrochemical Corrosion Behavior of S45C Steel in Seawater and a Culture Medium[J]. 中国腐蚀与防护学报, 2013, 33(6): 481-490.
[8] CHEN Juan1, LEI Yanhua1, GAO Guanhui1, KONG Moli1, YIN Yansheng2. CORROSION BEHAVIOR OF Cu-Ni-Sn ALLOY UNDER SULFATE-REDUCING BACTERIABIOFILM[J]. 中国腐蚀与防护学报, 2011, 31(3): 231-235.
[9] WANG Hongfen, WANG Zhiqi, HONG Haixia, CHEN Shougang,YIN Yansheng. CORROSION RESISTANCE BEHAVIOR OF CERIUM-DOPED TiO2 FILM IN THE PRESENCE OF MARINE BACTERIUM SULFATE-REDUCING BACTERIA[J]. 中国腐蚀与防护学报, 2010, 30(6): 481-486.
[10] LIU Hongfang LIU Tao. GROWTH CHARACTERISTICS OF THERMOPHILE SULFATE-REDUCING BACTERIA AND ITS EFFECT ON CARBON STEEL[J]. 中国腐蚀与防护学报, 2009, 29(2): 93-98.
[11] HUANG Yanliang ZHU Yongyan HUANG Sidi ZHANG Yangyang. HYDROGEN PERMEATION INVESTIGATION OF A MARINE STEEL IN THE SEA MUD WITH SULFATE-REDUCING BACTERIA[J]. 中国腐蚀与防护学报, 2008, 28(6期): 355-358.
[12] Meifang Wang. APPLIED RESEARCH ON THE COMPETITIVE GROWTH OF BACTERIA IN BIOLOGICAL CONTROL OF MIC[J]. 中国腐蚀与防护学报, 2004, 24(3): 159-162 .
[13] Xiaoli Zhang; Zhixin Chen; Haihong Liu. EFFECT OF ENVIRONMENT FACTORS ON THE GROWTH OF SULFATE-REDUCING BACTERIA[J]. 中国腐蚀与防护学报, 2000, 20(4): 224-229 .
No Suggested Reading articles found!