Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (2): 87-104    DOI: 10.11902/1005.4537.2018.036
Current Issue | Archive | Adv Search |
Research Progress of Microarc Oxidation for Corrosion Prevention of Mg-alloys
Xuejun CUI(), Jing PING
School of Materials Science and Engineering, Sichuan University of Science and Engineering,Zigong 643000, China
Download:  HTML  PDF(7843KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This paper reviewed the development history of microarc oxidation (MAO) technique and the mechanism related with spark discharge process, with emphasis on the corrosion prevention for Mg-alloys in the past two decades. Various aspects of MAO coating of Mg-alloys and recent progress were summarized in detail, such as power types, operating modes, electrical parameters, electrolyte solutions, post- and pre-treatments. And the problems and suggestions of MAO technique for corrosion prevention of magnesium alloys were presented in the end.

Key words:  magnesium alloy      coating      plasma electrolytic oxidation      corrosion resistance      oxidation process     
Received:  12 February 2018     
Fund: Supported by Science and Technology Planning Project of Sichuan Province (2016JZ0032) and Talent Introduction Funds of the Sichuan University of Science and Engineering (2017RCL15)

Cite this article: 

Xuejun CUI, Jing PING. Research Progress of Microarc Oxidation for Corrosion Prevention of Mg-alloys. Journal of Chinese Society for Corrosion and protection, 2018, 38(2): 87-104.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.036     OR     https://www.jcscp.org/EN/Y2018/V38/I2/87

Fig.1  Time line for development of MAO technology
Fig.2  Schematic current-voltage diagram of MAO process[2,34]
Fig.3  Surface (a~c) and cross-sectional (d~f) morphologies of MAO coatings prepared under constant voltage (a, d),current (b, e), and power (c, f)[53]
Fig.4  Surface morphologies of MAO coatings under different current pulse frequencies: (a) 500 Hz, (b) 1000 Hz, (c) 1500 Hz, (d) 2000 Hz[68]
Specie Additive Concentration Basesolution Substrate Effect
Restraining sparking Thickness Hardness Roughness Anticorrosion Ref.
Organic amine Diethylenetriamine 0.5 mol/L PO43- AZ91D Yes Un In Un In [93,94]
Triethylamine 40~60 g/L PO43- AZ91D Yes Un In Un In [93,95]
Hexamethylenetetramine 0.1 mol/L SiO32--PO43- AZ91D Yes Un In Un In [76]
N,N,N',N'-Tetramethylethy-lenediamine 0.1 mol/L SiO32--PO43- AZ91D Yes Un Un De In [96]
Triethanolamine 30 g/L SiO32--B4O72- AZ91D Yes Un Un De In [97]
Organic acid Aminoacetic acid 6.0 g/L SiO32--B4O72- Mg-Li Yes In Un De In [98]
Terephthalic acid 2.0 g/L B4O72- AZ91D Yes De Un De In [99]
Phytic acid 8.0 g/L OH- AZ91HP Yes Un Un Un In [100]
Tannic acid 4.0 g/L SiO32- AZ91 Yes In Un Un In [101]
EDTA 0.03 mol/L SiO32- AZ31 Yes In Un Un In [102]
Citric Acid 12 g/L SiO32- AZ31 Yes Un Un De In [103]
Nitrilotriacetic acid 0.04 mol/L SiO32- AZ31 Yes In Un De In [104]
Salt of organic Sodium of polyaspartic acid 19.2~28.8 g/L SiO32- AZ31 Yes Un Un De In [105]
acid Trisodium citrate 10 g/L SiO32--B4O72- ZK60 Yes De Un Un In [106]
Ferric citrate 15 g/L PO43- AZ40M Un In Un Un In [107]
Sodium citrate 0.5 g/L SiO32- AZ31B Yes De Un De De [108]
EDTA-2Na 1 g/L SiO32- AZ31B Yes De Un De De [108]
L-Ornithine acetate 0.03 mol/L SiO32- AZ31 Yes In Un Un In [92]
Potassium biphthalate 4 g/L B4O72- AZ91D Yes De Un De In [109]
Alcohols Glycerine 4 mL/L SiO32- AZ91D Yes De Un De In [110]
Ethylene glycol 10 g/L SiO32--B4O72- AZ31B Yes In Un De In [111]
Organic Glucose 10 g/L SiO32- AZ31B Yes In Un De In [112]
sugars Sucrose 10 g/L SiO32- AZ31B Yes Un Un De In [113]
Aromatic 1H-Benzotriazole 5 g/L SiO32- AZ31B Yes In Un De In [114]
compounds 8-Hydroxyquinoline 2 g/L SiO32- AZ91 Yes In Un Un In [115]
Siloxane KH-550 4~7 mL/L SiO32- AZ31B Yes In Un De In [116]
Organic Polytetra- 18 g/L PO43- AM60 No De Un Un In [117]
fluorine fluoroethylene MA8 [118]
Table 1  Specie, concentration and function of organic additives[93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118]
Additive Concentration Base solution Substrate Effect Ref.
Restraining sparking Thickness Hardness Roughness Anticorrosion
H2O2 10~20 ml/L SiO32- ZK60 Yes In Un In De [119]
NaF 0.2 mol/L PO43- AZ91 No In Un Un In [120]
K4P2O7 3 g/L SiO32- AZ31 No De Un In In [121]
Cu3(PO4)2 3~5 g/L SiO32~PO43- LZ91 Mg-Li Un In Un In De [122]
KMnO4 0.07 mol/L SiO32- AZ91 No De Un In In [123]
K2CrO4 0.4 g/L SiO32- AZ91D Un In Un In In [124]
NH4VO3 40 g/L SiO32--B4O72- AZ31B Yes Un Un De In [125]
K2ZrF6 10 g/L ZrF62--PO43- AM30 No De Un Un In [126]
K2TiF6 10 g/L PO3- Mg-8.5Li-1Al Un In Un Un In [127]
Na2WO4 10 g/L AlO22- AZ31 No In Un In In [128]
La(NO3)3 0.3 g/L PO43- AZ31 No De Un Un In [129]
Na2B4O7 9 g/L SiO32- AZ31B Yes In Un In In [130]
Na2B4O7 20 g/L OH- AZ91HP Yes In Un In De [131]
Nano-CeO2 6 g/L SiO32- AZ91D Un In In Un In [132]
Nano-TiO2 5 g/L AlO22--PO43- AZ91D Un Un De Un In [133,137]
Nano-SiO2 10 g/L SiO32- AZ31B Un In Un Un In [134]
Nano-SiC 4 g/L SiO32--AlO22- AZ91D No In In Un In [135]
Nano-Al2O3 15 g/L SiO32- AZ31B Un In In Un In [136,137]
Nano-ZrO2 4 g/L SiO32-PO43--BO3 AM60B Un Un In Un In [137]
Nano-graphite 10 g/L SiO32- ZM5 Un In In Un Un [138]
Oxidized graphene 0.05 g/L PO43- AZ31 Un In Un In In [139]
TiN Particles 2 g/L PO43- AZ91D Un In In Un In [140]
Nano-TiN 3 g/L SiO32- MA8 Un In In In De [141]
Nano-Nd2O3 10 g/L SiO32- AZ91D No De Un Un De [142]
Nano-Y2O3 10 g/L SiO32- AZ91D Yes In Un Un In [142]
Nano-Si3N4 2~3 g/L PO43--AlO22- AZ31 No In In In In [143]
Table 2  Specie, concentration and function of inorganic additives[119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143]
Fig.5  Surface morphologies and contact angles (inset) of the MAO coating before (a) and after (b) modification[151]
Fig.6  Back scattered electron images of the surface (a) and cross section (c) of MAO coating with sealing treatment of 3 h immersion in 10 g/L Ce(NO3)3 bath and corresponding X-ray elemental maps (b, d)[155] (Note: the sealed PEO coatings (a~d) were developed)
Fig.7  Surface morphologies of self-sealing MAO coatings on magnesium alloy: (a) K2ZrF6[157], (b) K2TiF6[158]
Fig.8  Surface morphologies of MAO coatings at different external voltages: (a) 0 V, (b) 1000 V, (c) 3000 V, (d) 5000 V[160]
Fig.9  Surface (a, c) and cross-section (b, d) morphologies of the coatings prepared via one-step process (a, b) in Na2SiO4 solution and wo-step process in Na2SiO4-K2ZrF6 solution (c, d)[162]
[1] Xue W B, Lai Y C, Deng Z W, et al.The properties of coating formed by microplasma oxidation on magnesium alloy[J]. Mater. Sci. Technol., 1997, 5(2): 89(薛文彬, 来永春, 邓志威等. 镁合金微等离子体氧化膜的特性[J]. 材料科学与工艺, 1997, 5(2): 89)
[2] Yerokhin A L, Nie X, Leyland A, et al.Plasma electrolysis for surface engineering[J]. Surf. Coat. Technol., 1999, 122: 73
[3] Zhang L, Zhang J Q, Chen C F, et al.Advances in microarc oxidation coated AZ31 Mg alloys for biomedical applications[J]. Corros. Sci., 2015, 91: 7
[4] Darband G B, Aliofkhazraei M, Hamghalam P, et al.Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications[J]. J. Magnes. Alloy., 2017, 5: 74
[5] Wang H B, Fang Z G, Jiang B L.Microarc Oxidation Technology and Its Applications in Sea Environments [M]. Beijing: National Defense Industry Press, 2010: 4(王虹斌, 方志刚, 蒋百灵. 微弧氧化技术及其在海洋环境中的应用 [M]. 北京: 国防工业出版社, 2010: 4)
[6] Sluginov N P. Electric discharges in water [J]. J. Russ. Phys. Chem. Soc., 1880, 12: 193
[7] Dunstan B G, Mcarthur S J.Process of protecting surfaces of aluminum or aluminum alloys [P]. US Pat, 1771910, 1930
[8] Jean F.Protecting magnesium and its alloys [P]. US Pat, 2196161, 1940
[9] Güntherschulze A, Betz H.Neue untersuchungen über die elektrolytische ventilwirkung: II. Die oxydschicht von Sb, Bi, W, Zr, Al, Zn, Mg[J]. Z. Phys., 1931, 37: 726
[10] Buzzard R W.Method of producing corrosion resistant coatings on magnesium [P]. US Pat, 2261960, 1941
[11] Buzzard R W.Bath for and electrolytic treatment of magnesium and magnesium alloys [P]. US Pat, 2414090, 1947
[12] Rakoch A G, Bardin I V.Microarc oxidation of light alloys[J]. Metallurgist, 2010, 54: 378
[13] Rakoch A G, Bardin I V, Kovalev V L, et al.Microarc oxidation of light constructional alloys: Part 1. Main notions on the microarc oxidation of light constructional alloys[J]. Russ. J. Non-Ferr. Met., 2013, 54: 341
[14] McNeill W. The preparation of cadmium niobate by an anodic spark reaction[J]. J. Electrochem. Soc., 1958, 105: 544
[15] Gruss L L, McNeil W. Anodic spark reaction products in aluminate, tungstate, and silicate solutions[J]. Electrochem. Technol., 1963, 1: 283
[16] McNeil W, Gruss L L. Anodic film growth by anion deposition in aluminate, tungstate, and phosphate solutions[J]. J. Electrochem. Soc., 1963, 110: 853
[17] McNeill W. The Cr-22 coating for magnesium[J]. Met. Finish., 1955, 53: 57
[18] Dow C C.Bath for and method of producing a corrosion resistant coating upon light metals [P]. GB Pat, 762195A, 1956
[19] Evangelides H A.Method of electrolytically coating magnesium and electrolyte therefor [P]. US Pat, 2723952, 1955
[20] Brown S D, Kuna K J, Van T B.Anodic spark deposition from aqueous solutions of NaAlO2 and Na2SiO3[J]. J. Am. Ceram. Soc., 1971, 54: 384
[21] Sis L B, Brown S D, Van T B, et al.Polymorphic phases in anodic-spark-deposited coatings of A12O3[J]. J. Am. Ceram. Soc., 1974, 57(2): 108
[22] Nikolaev A V, Markov G A, Pshchevitskii B I.A new phenomenon in electrolysis[J]. Izv. Sib. Otd. Akad. Nauk SSSR, Ser. Khim. Nauk, 1977, 5(12): 32
[23] Kurze P, Krysmann W, Schreckenbach J, et al.Coloured ANOF layers on aluminium[J]. Cryst. Res. Technol., 1987, 22(1): 53
[24] Fyedorov V A, Kan A G, Maksutov R P.Surface strengthening of oil & gas trade facilities by micro arc oxidation [A]. VNII-OENG[C]. Moscow: 1989
[25] Markov G A, Gizatulin B S, Rychazhkova I B.Method of electrolytic deposition of silicate coatings [P]. USSR Pat, 926083, 1982
[26] Snezhko L A, Rozenboim G B, Chernenko V I.Corrosion resistance of aluminum alloys with silicate coatings[J]. Prot. Met., 1981. 17(5): 501
[27] Kurze P, Krysmann W, Berger M, et al.Method for the preparation of decorative coating on metals [P]. US Pat, 4869789, 1989
[28] Yamada M, Mita I.Formation of eta-alumina by anodic oxidation of aluminum[J]. Chem. Lett., 1982, 11: 759
[29] Xue W B, Deng Z W, Lai Y, et al.Analysis of phase distribution for ceramic coatings formed by microarc oxidation on aluminum alloy[J]. J. Am. Ceram. Soc, 1998, 81: 1365
[30] Lu X P, Mohedano M, Blawert C, et al.Plasma electrolytic oxidation coatings with particle additions-a review[J]. Surf. Coat. Technol., 2016, 307: 1165
[31] Yerokhin A L, Lyubimov V V, Ashitkov R V.Phase formation in ceramic coatings during plasma electrolytic oxidation of aluminium alloys[J]. Ceram. Int., 1998, 24: 1
[32] Nie X, Leyland A, Song H W, et al. Thickness effects on the mechanical properties of micro-arc discharge oxide coatings on aluminium alloys [J]. Surf. Coat. Technol., 1999, 116-119: 1055
[33] Gerasimov M V, Nikolaev V A, Shcherbakov A N.Microplasma oxidation of metals and alloys[J]. Metallurgist, 1994, 38: 179.
[34] Blawert C, Dietzel W, Ghali E, et al.Anodizing treatments for magnesium alloys and their effect on corrosion resistance in various environments[J]. Adv. Eng. Mater., 2006, 8: 511
[35] Wood G C, Pearson C.Dielectric breakdown of anodic oxide films on valve metals[J]. Corros. Sci., 1967, 7: 119
[36] Vijh A K.Sparking voltages and side reactions during anodization of valve metals in terms of electron tunnelling[J]. Corros. Sci., 1971, 11: 411
[37] Ikonopisov S.Theory of electrical breakdown during formation of barrier anodic films[J]. Electrochim. Acta, 1977, 22: 1077
[38] Van T B, Brown S D, Wirtz G P.Mechanism of anodic spark deposition[J]. Am. Ceram. Soc. Bull., 1977, 56: 563
[39] Nikoiaev A V, Rykaiin N N, Borzhov A P.Energy balance of a high current hollow tungsten cathode[J]. Fiz Khim Obrab Mater., 1977, 2: 32
[40] Albella J M, Montero I, Martínez-Duart J M. Electron injection and avalanche during the anodic oxidation of tantalum[J]. J. Electrochem. Soc., 1984, 131: 1101
[41] Tang W X, Yan J K, Ni E X, et al.Mechanism and development trend of micro-arc oxidation[J]. Hot Work. Technol., 2016, 45(14): 6(唐婉霞, 严继康, 倪尔鑫等. 微弧氧化的机理及其发展趋势[J]. 热加工工艺, 2016, 45(14): 6)
[42] Krysmann W, Kurze P, Dittrich K H, et al.Process characteristics and parameters of anodic oxidation by spark discharge (ANOF)[J]. Cryst. Res. Technol., 1984, 19: 973
[43] Epelfeld A, Lyudin V, Dunkin O, et al.A discharge in the metal-oxide-electrolyte system during Microarc oxidation with alternating current[J]. Bull. Russ. Acad. Sci., Phys., 2000, 64: 610
[44] Yerokhin A L, Snizhko L O, Gurevina N L, et al.Discharge characterization in plasma electrolytic oxidation of aluminium[J]. J. Phys.: Appl. Phys., 2003, 36D: 2110
[45] Hussein R O, Nie X, Northwood D O, et al.Spectroscopic study of electrolytic plasma and discharging behaviour during the plasma electrolytic oxidation (PEO) process[J]. J. Phys.: Appl. Phys., 2010, 43D: 105203
[46] Wang L, Chen L, Yan Z C, et al.Optical emission spectroscopy studies of discharge mechanism and plasma characteristics during plasma electrolytic oxidation of magnesium in different electrolytes[J]. Surf. Coat. Technol., 2010, 205: 1651
[47] Mi T, Jiang B, Liu Z, et al.Plasma formation mechanism of microarc oxidation[J]. Electrochim. Acta, 2014, 123: 369
[48] Pan M Q, Chi G X, Wei D B, et al.Current status of research and application of micro-arc oxidation of aluminum alloys and magnesium alloys in China[J]. Mater. Prot., 2010, 43(4): 10(潘明强, 迟关心, 韦东波等. 我国铝/镁合金微弧氧化技术的研究及应用现状[J]. 材料保护, 2010, 43(4): 10)
[49] Jin F Y, Chu P K, Xu G D, et al. Structure and mechanical properties of magnesium alloy treated by micro-arc discharge oxidation using direct current and high-frequency bipolar pulsing modes [J]. Mater. Sci. Eng., 2006, A435/436: 123
[50] Wang S Y, Xia Y P, Liu L, et al.Preparation and performance of MAO coatings obtained on AZ91D Mg alloy under unipolar and bipolar modes in a novel dual electrolyte[J]. Ceram. Int., 2014, 40: 93
[51] Hussein R O, Northwood D O, Nie X.Processing-microstructure relationships in the plasma electrolytic oxidation (PEO) coating of a magnesium alloy[J]. Mater. Sci. Appl., 2014, 5: 124
[52] Jiang Y L, Yu Z X, Xia Q X, et al.Structure and corrosion resistance of PEO ceramic coatings on AZ91D Mg alloy under three kinds of power modes[J]. Int. J. Appl. Ceram. Technol., 2013, 10: E310
[53] Yao Z P, Wang D L, Xia Q X, et al.Effect of PEO power modes on structure and corrosion resistance of ceramic coatings on AZ91D Mg alloy[J]. Surf. Eng., 2012, 28: 96
[54] Yang R S, Wei J S, Cui X J.Structure and corrosion resistance of micro-arc oxidation coatings on AZ91D magnesium alloy prepared by constant power mode[J]. Mater. Prot., 2015, 48(12): 8(杨瑞嵩, 魏劲松, 崔学军. AZ91D镁合金恒功率微弧氧化膜的结构及耐蚀性能[J]. 材料保护, 2015, 48(12): 8)
[55] Gu Y H, Cai X J, Ning C Y, et al.Effects of voltage on the microstructure and corrosion performance of microarc oxidation coated AZ31 magnesium alloys[J]. China Surf. Eng., 2012, 25(6): 21(顾艳红, 蔡晓君, 宁成云等. 电压对AZ31镁合金微弧氧化涂层微观结构及腐蚀性能的影响[J]. 中国表面工程, 2012, 25(6): 21)
[56] Cui X J, Wang R, Wei J S, et al.Effect of electrical parameters on micromorphology and corrosion Resistance of micro-arc oxidation coating on AZ31B Mg alloy[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 495(崔学军, 王荣, 魏劲松等. 电参数对AZ31B镁合金微弧氧化膜微观形貌及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2014, 34: 495)
[57] Zhang R F, Shan D Y, Chen R S, et al.Effects of electric parameters on properties of anodic coatings formed on magnesium alloys[J]. Mater. Chem. Phys., 2008, 107: 356
[58] Cui X J, Li X F, Li T, et al.Negative voltage on structure and corrosion resistance of micro-arc oxidation coating on AZ31B magnesium alloy[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 137(崔学军, 李晓飞, 李特等. 负向电压对AZ31B镁合金表面微弧氧化膜结构和耐蚀性的影响[J]. 中国腐蚀与防护学报, 2016, 36: 137)
[59] Pan Y K, Wang D G, Chen C Z.Effect of negative voltage on the microstructure, degradability and in vitro bioactivity of microarc oxidized coatings on ZK60 magnesium alloy[J]. Mater. Lett., 2014, 119: 127
[60] Dong H R, Ma Y, Guo H X, et al.Characteristics of microstructure and corrosion resistance of micro arc coatings on magnesium alloy fabricated with different power loading processes[J]. Rare Met. Mater. Eng., 2017, 46: 1656(董海荣, 马颖, 郭惠霞等. 不同加压方式下镁合金微弧氧化膜结构及耐蚀性的变化规律[J]. 稀有金属材料与工程, 2017, 46: 1656)
[61] Lü W L, Ma Y, Chen T J, et al.Effects of increase extent of voltage on micro-arc oxidation coatings of AZ91D magnesium alloy[J]. Rare Met. Mater. Eng., 2009, 38: 1480(吕维玲, 马颖, 陈体军等. 加压幅度对AZ91D镁合金微弧氧化膜的影响[J]. 稀有金属材料与工程, 2009, 38: 1480)
[62] Lü W L, Ma Y, Chen T J, et al.Effects of interval of enhancive voltage on micro-arc oxidation coatings of magnesium alloy AZ91D[J]. Trans. China Weld. Inst., 2009, 30(8): 81(吕维玲, 马颖, 陈体军等. 加压时间间隔对AZ91D镁合金微弧氧化膜的影响 [J]. 焊接学报, 2009, 30(8): 81)
[63] Ezhilselvi V, Nithin J, Balaraju J N, et al.The influence of current density on the morphology and corrosion properties of MAO coatings on AZ31B magnesium alloy[J]. Surf. Coat. Technol., 2016, 288: 221
[64] Srinivasan B P, Liang J, Blawert C, et al.Effect of current density on the microstructure and corrosion behaviour of plasma electrolytic oxidation treated AM50 magnesium alloy[J]. Appl. Surf. Sci., 2009, 255: 4212
[65] Yang G L, Lü X Y, Bai Y Z, et al.The effects of current density on the phase composition and microstructure properties of micro-arc oxidation coating[J]. J. Alloy. Compd., 2002, 345: 196
[66] Song X H, Lu J H, Yin X J, et al.The effect of pulse frequency on the electrochemical properties of micro arc oxidation coatings formed on magnesium alloy[J]. J. Magnes. Alloy., 2013, 1: 318
[67] Zou B, Lü G H, Zhang G L, et al.Effect of current frequency on properties of coating formed by microarc oxidation on AZ91D magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 1500
[68] Su L W, Ge Y F.Effect of current pulse parameter on micro-arc oxidation process of magnesium alloys[J]. Heat Treat. Met., 2017, 42(8): 125(苏立武, 葛延峰. 脉冲电流参量对镁合金微弧氧化过程的影响[J]. 金属热处理, 2017, 42(8): 125)
[69] Dehnavi V, Luan B L, Shoesmith D W, et al.Effect of duty cycle and applied current frequency on plasma electrolytic oxidation (PEO) coating growth behavior[J]. Surf. Coat. Technol., 2013, 226: 100
[70] Ma Y, Zhan H, Ma Y Z, et al.Effects of electrical parameters on microstructure and corrosion resistance of micro-arc oxidation coatings on AZ91D magnesium alloys[J]. Chin. J. Nonferrous Met., 2010, 20: 1467(马颖, 詹华, 马跃洲等. 电参数对AZ91D镁合金微弧氧化膜层微观结构及耐蚀性的影响[J]. 中国有色金属学报, 2010, 20: 1467)
[71] Sun L, Lu S, Lü W G, et al.Performance of micro-arc oxidation coating prepared under steps duty ratio mode[J]. Mater. Prot., 2017, 50(2): 44(孙磊, 芦笙, 吕伟刚等. 阶段占空比模式下微弧氧化膜层的性能[J]. 材料保护, 2017, 50(2): 44)
[72] Liu Y, Wei Z L, Yang F W, et al.Effect of electrolyte constituents on properties of anodic coatings of magnesium alloys[J]. J. Chin. Soc. Corros. Prot., 2011, 31: 255(刘妍, 卫中领, 杨富巍等. 电解液组成对镁合金阳极氧化膜性能的影响[J]. 中国腐蚀与防护学报, 2011, 31: 255)
[73] Chai L Y, Yu X, Yang Z H, et al.Anodizing of magnesium alloy AZ31 in alkaline solutions with silicate under continuous sparking[J]. Corros. Sci., 2008, 50: 3274
[74] Ghasemi A, Raja V S, Blawert C, et al.The role of anions in the formation and corrosion resistance of the plasma electrolytic oxidation coatings[J]. Surf. Coat. Technol., 2010, 204: 1469
[75] Seyfoori A, Mirdamadi S, Khavandi A, et al.Biodegradation behavior of micro-arc oxidized AZ31 magnesium alloys formed in two different electrolytes[J]. Appl. Surf. Sci., 2012, 261: 92
[76] Bai A, Chen Z J.Effect of electrolyte additives on anti-corrosion ability of micro-arc oxide coatings formed on magnesium alloy AZ91D[J]. Surf. Coat. Technol., 2009, 203: 1956
[77] Mori Y, Koshi A, Liao J S, et al.Characteristics and corrosion resistance of plasma electrolytic oxidation coatings on AZ31B Mg alloy formed in phosphate-silicate mixture electrolytes[J]. Corros. Sci., 2014, 88: 254
[78] Salami B, Afshar A, Mazaheri A.The effect of sodium silicate concentration on microstructure and corrosion properties of MAO-coated magnesium alloy AZ31 in simulated body fluid[J]. J. Magnes. Alloy., 2014, 2: 72
[79] Jiang B L, Zhang X F.Growth rhythm and corrosion resistance of ceramic coatings formed by microarc oxidation on magnesium alloys in different conductivity solutions[J]. Rare Met. Mater. Eng., 2005, 34: 393(蒋百灵, 张先锋. 不同电导率溶液中镁合金微弧氧化陶瓷层的生长规律及耐蚀性[J]. 稀有金属材料与工程, 2005, 34: 393)
[80] Zhang L, Liang G, Jiang B L, et al.Effect of solute ions on plasma generation process and microstructure of microarc oxidation layer on AZ31B magnesium alloy[J]. J. Chin. Ceram. Soc., 2014, 42: 785(张龙, 梁戈, 蒋百灵等. 溶质离子对AZ31B镁合金微弧诱发过程和陶瓷层结构的影响 [J]. 硅酸盐学报, 2014, 42: 785)
[81] Yao L F, Chen T, Xu Y, et al.Effect of (NaPO3)6 concentration in electrolyte on corrosion resistance and hemolytic rate of MAO coatings on magnesium alloy[J]. Corros. Sci. Prot. Technol., 2016, 28: 39(姚力夫, 陈涛, 徐颖等. 电解液浓度对镁合金微弧氧化层耐蚀性与溶血率的影响[J]. 腐蚀科学与防护技术, 2016, 28: 39)
[82] Simchen F, Sieber M, Lampke T.Electrolyte influence on ignition of plasma electrolytic oxidation processes on light metals[J]. Surf. Coat. Technol., 2017, 315: 205
[83] Ono S, Moronuki S, Mori Y, et al.Effect of electrolyte concentration on the structure and corrosion resistance of anodic films formed on magnesium through plasma electrolytic oxidation[J]. Electrochim. Acta, 2017, 240: 415
[84] Yan F Y, Lin H, Ma Y, et al.Study on electrolyte conductivity of magnesium alloy micr-arc oxidization[J]. Light Alloy Fabricat. Technol., 2007, 35(5): 28(阎峰云, 林华, 马颖等. 镁合金微弧氧化电解液电导率的研究[J]. 轻合金加工技术, 2007, 35(5): 28)
[85] Dong K H, Song Y W, Shan D Y, et al.Research progress of micro-arc oxidation technology on magnesium alloys[J]. Surf. Technol., 2015, 44(3): 74(董凯辉, 宋影伟, 单大勇等. 镁合金微弧氧化技术的研究进展[J]. 表面技术, 2015, 44(3): 74)
[86] Ma Y Z, Ma F J, Chen M, et al.Effect of temperature of electrolyte on coating formation process of magnesium alloy with micro-arc oxidation[J]. J. Lanzhou Univ. Technol., 2008, 34(3): 25(马跃洲, 马凤杰, 陈明等. 电解液温度对镁合金微弧氧化成膜过程的影响[J]. 兰州理工大学学报, 2008, 34(3): 25)
[87] Hao J M, Li J X.Study on electrolyte failure process of micro-arc oxidation for AZ91D alloy[J]. Hot Work. Technol., 2015, 44(14): 241(郝建民, 李敬学. AZ91D镁合金微弧氧化电解液的失效过程研究[J]. 热加工工艺, 2015, 44(14): 241)
[88] Lu X P, Mohedano M, Blawert C, et al.Plasma electrolytic oxidation coatings with particle additions-a review[J]. Surf. Coat. Technol., 2016, 307: 1165
[89] Gou Y N, Zhi Y, Zhang D F, et al.Research progress on organic additives in the anodizing process of magnesium alloy[J]. J. Funct. Mater., 2015, 46: 23012(沟引宁, 直研, 张丁非等. 有机添加剂在镁合金阳极氧化中的研究进展[J]. 功能材料, 2015, 46: 23012)
[90] Chang L M, Tian L F, Liu W, et al.Research progress of additives in micro-arc oxidation of magnesium alloys[J]. Corros. Prot., 2013, 34: 718(常立民, 田利丰, 刘伟. 添加剂在镁合金微弧氧化中的研究进展[J]. 腐蚀与防护, 2013, 34: 718)
[91] Yang X W, Ma A B, Liu H, et al.Research progress of electrolytes for colored mmicro-arc oxidation coatings on magnesium alloys[J]. Mater. Prot., 2016, 49(12): 58(杨晓伟, 马爱斌, 刘欢等. 镁合金微弧氧化着色电解液的研究进展[J]. 材料保护, 2016, 49(12): 58)
[92] Gou Y N, Zhang D F, Yi D, et al.Effect of amino acid on the anodic oxidation of magnesium alloy and its mechanism[J]. Rare Met. Mater. Eng., 2017, 46: 1103(沟引宁, 张丁非, 易丹等. 氨基酸类有机添加剂对镁合金阳极氧化的影响及其作用机制研究[J]. 稀有金属材料与工程, 2017, 46: 1103)
[93] Luo S L, Zhang T, Zhou H H, et al.Effect of organic amine on anodizing of magnesium alloys[J]. Chin. J. Nonferrous Met., 2004, 14: 691(罗胜联, 张涛, 周海晖等. 有机胺对镁合金阳极氧化的影响[J]. 中国有色金属学报, 2004, 14: 691)
[94] Barton T F, Macculloch J A, Ross P N.Anodization of magnesium and magnesium based alloys [P]. US Pat, 6280598, 2001
[95] Asoh H, Ono S.Anodizing of magnesium in amine-ethylene glycol electrolyte[J]. Mater. Sci. Forum, 2003, 419: 957
[96] Bai A, Chen Z J.N, N, N', N'-tetramethylethylenediamine on anticorrosion ability of micro-arc oxide coatings formed on magnesium alloy AZ91D[J]. Surf. Eng., 2011, 27: 790
[97] Ou A L, Yu G, Hu B N, et al.Effect of triethanolamine on anodizing process of magnesium alloys[J]. CIESC J., 2009, 60: 2118(欧爱良, 余刚, 胡波年等. 三乙醇胺在镁合金阳极氧化中的作用[J]. 化工学报, 2009, 60: 2118)
[98] Chang L M, Wang P, Liu C J.Effects of aminoacetic acid on Mg-Li alloy anodic film[J]. Electroplat. Poll. Contrl., 2010, 30(3): 26(常立民, 王鹏, 刘长江. 氨基乙酸对镁-锂合金阳极氧化膜的影响[J]. 电镀与环保, 2010, 30(3): 26)
[99] Liu Y, Wei Z L, Yang F W, et al.Anodizing of AZ91D magnesium alloy in borate-terephthalic acid electrolyte[J]. Acta Phys.-Chim. Sin., 2011, 27: 2385.
[100] Zhang R F, Zhang S F, Duo S W.Influence of phytic acid concentration on coating properties obtained by MAO treatment on magnesium alloys[J]. Appl. Surf. Sci., 2009, 255: 7893
[101] Zhang S F, Zhang R F, Li W K, et al.Effects of tannic acid on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloy[J]. Surf. Coat. Technol., 2012, 207: 170
[102] Gou Y N, Zhang D F, Guo X X, et al.Influence of ethylene diamine tetraacetic acid on properties of composite anodizing films on AZ31 magnesium alloy[J]. Trans. Mater. Heat Treat., 2014, 35(1): 169(沟引宁, 张丁非, 郭星星等. 乙二胺四乙酸对AZ31镁合金复合阳极氧化膜性能的影响[J]. 材料热处理学报, 2014, 35(1): 169)
[103] Xiong Z P, Si Y J, Zheng X W, et al.Influence of citric acid on properties of anodized film on AZ31 magnesium alloy[J]. Electroplat. Finish., 2014, 33: 1045(熊中平, 司玉军, 郑兴文等. 柠檬酸对AZ31镁合金阳极氧化膜性能的影响[J]. 电镀与涂饰, 2014, 33: 1045)
[104] Wang J, Wang Y, Guo X X.Effects of nitrilotriacetic acid on properties of composite anodizing films on Mg alloy[J]. Hot Work. Technol., 2015, 44(4): 197(王敬, 王勇, 郭星星. 氨三乙酸对镁合金复合阳极氧化膜的影响[J]. 热加工工艺, 2015, 44(4): 197)
[105] Liu Y P, Zhang D F, Chen C G, et al.Adsorption orientation of sodium of polyaspartic acid effect on anodic films formed on magnesium alloy[J]. Appl. Surf. Sci., 2011, 257: 7579
[106] Lu S, Xu R Y, Chen J, et al.Optimization of silicate electrolyte for micro-arc oxidation and characteristic of coating fabricated on ZK60 magnesium alloy[J]. Chin. J. Nonferrous Met., 2010, 20: 1868(芦笙, 徐荣远, 陈静等. ZK60镁合金微弧氧化硅酸盐电解液的优化及膜层特性[J]. 中国有色金属学报, 2010, 20: 1868)
[107] Feng L, Zhang L G, Li S Z, et al.Effect of ferric citrate on microstructure and corrosion resistance of micro-arc oxidation black film on Mg-alloy AZ40M[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 360(冯立, 张立功, 李思振等. 柠檬酸铁浓度对镁合金微弧氧化黑色膜层微观结构及耐蚀性的影响[J]. 中国腐蚀与防护学报, 2017, 37: 360)
[108] Cui X J, Ping J, Dou B J, et al.Surface morphology and anti-corrosion of micro-arc oxidation coatings prepared in different additives[J]. China Surf. Eng., 2018, 31(2): 39(崔学军, 平静, 窦宝捷等. 几种添加剂作用的微弧氧化膜表面结构及防腐性能[J]. 中国表面工程, 2018, 31(2): 39)
[109] Liu Y, Yang F W, Wei Z L, et al.Anodizing of AZ91D magnesium alloy using environmental friendly alkaline borate-biphthalate electrolyte[J]. Trans. Nonferrous Met. Soc. China, 2012, 22: 1778
[110] Wu D, Liu X D, Lu K, et al.Influence of C3H8O3 in the electrolyte on characteristics and corrosion resistance of the microarc oxidation coatings formed on AZ91D magnesium alloy surface[J]. Appl. Surf. Sci., 2009, 255: 7115
[111] Zhu F, Wang J W, Li S H, et al.Preparation and characterization of anodic films on AZ31B Mg alloy formed in the silicate electrolytes with ethylene glycol oligomers as additives[J]. Appl. Surf. Sci., 2012, 258: 8985
[112] Tu X H, Chen L, Wu J Y.Effect of glucose on properties of anodizing film on AZ31B magnesium alloy[J]. Chin. J. Nonferrous Met., 2013, 23: 727(屠晓华, 陈利, 吴建一. 葡萄糖对镁合金阳极氧化膜性能的影响[J]. 中国有色金属学报, 2013, 23: 727)
[113] Tu X H, Chen L, Shen J F, et al.Effects of sucrose on anodized film formed on AZ31B magnesium alloy in environmental-friendly electrolyte[J]. Int. J. Electrochem. Sci., 2012, 7: 9573
[114] Guo X H, An M Z, Yang P X, et al.Effects of benzotriazole on anodized film formed on AZ31B magnesium alloy in environmental-friendly electrolyte[J]. J. Alloy. Compd., 2009, 482: 487
[115] Zhang R F, Zhang S F, Yang N, et al.Influence of 8-hydroxyquinoline on properties of anodic coatings obtained by micro arc oxidation on AZ91 magnesium alloys[J]. J. Alloy. Compd., 2012, 539: 249
[116] Cui X J, Dai X, Zheng B Y, et al.Effect of KH-550 content on structure and properties of a micro-arc oxidation coating on Mg-alloy AZ31B[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 227(崔学军, 代鑫, 郑冰玉等. KH-550对AZ31B镁合金表面微弧氧化膜结构及性能的影响[J]. 中国腐蚀与防护学报, 2017, 37: 227)
[117] Guo J, Wang L P, Wang S C, et al.Preparation and performance of a novel multifunctional plasma electrolytic oxidation composite coating formed on magnesium alloy[J]. J. Mater. Sci., 2009, 44: 1998
[118] Mashtalyar D V, Nadaraia K V, Sinebryukhov S L, et al.Protective composite coatings formed on Mg alloy surface by PEO using organofluorine materials[J]. J. Mater. Sci. Technol., 2017, 33: 661
[119] Pan Y K, Chen C Z, Wang D G, et al.Influence of additives on microstructure and property of microarc oxidized Mg-Si-O coatings[J]. Ceram. Int., 2012, 38: 5527
[120] Barchiche C E, Veys-Renaux D, Rocca E.A better understanding of PEO on Mg alloys by using a simple galvanostatic electrical regime in a KOH-KF-Na3PO4 electrolyte[J]. Surf. Coat. Technol., 2011, 205: 4243
[121] Zhuang J J, Song R X, Hu Q, et al.Effect of pyrophosphate in electrolyte on the ceramic coatings prepared by Micro-arc oxidation on AZ31 magnesium alloy[J]. Mater. Rev., 2016, 30: 526(庄俊杰, 宋若希, 胡强等. 焦磷酸盐对AZ31镁合金微弧氧化陶瓷膜层的影响[J]. 材料导报, 2016, 30: 526)
[122] Lee S J, Do L H T. Effects of copper additive on micro-arc oxidation coating of LZ91 magnesium-lithium alloy[J]. Surf. Coat. Technol., 2016, 307: 781
[123] Hwang D Y, Kim Y M, Park D Y, et al.Corrosion resistance of oxide layers formed on AZ91 Mg alloy in KMnO4 electrolyte by plasma electrolytic oxidation[J]. Electrochim. Acta, 2009, 54: 5479
[124] Ma Y, Liu N, Wang Y S, et al.Effect of chromate additive on corrosion resistance of MAO coatings on magnesium alloys[J]. J. Chin. Ceram. Soc., 2011, 39: 1493(马颖, 刘楠, 王宇顺等. 铬酸盐对镁合金微弧氧化膜耐蚀性的影响[J]. 硅酸盐学报, 2011, 39: 1493)
[125] Si Y J, Xiong Z P, Zheng X W, et al.Improving the anti-corrosion ability of anodization film of AZ31B magnesium alloy by addition of NH4VO3 in the electrolyte[J]. Int. J. Electrochem. Sci., 2016, 11: 3261
[126] Liu F, Shan D Y, Song Y W, et al.Effect of additives on the properties of plasma electrolytic oxidation coatings formed on AM50 magnesium alloy in electrolytes containing K2ZrF6[J]. Surf. Coat. Technol., 2011, 206: 455
[127] Song L, Kou Y, Song Y, et al.Fabrication and characterization of micro-arc oxidation (MAO) coatings on Mg-Li alloy in alkaline polyphosphate electrolytes without and with the addition of K2TiF6[J]. Mater. Corros., 2011, 62: 1124
[128] Tu W B, Cheng Y L, Zhan T Y, et al.Influence of sodium tungstate and sealing treatment on corrosion resistance of coatings formed on AZ31 magnesium alloy by plasma electrolytic oxidation[J]. Int. J. Electrochem. Sci., 2017, 12: 10863
[129] Toorani M, Aliofkhazraei M, Golabadi M, et al.Effect of lanthanum nitrate on the microstructure and electrochemical behavior of PEO coatings on AZ31 Mg alloy[J]. J. Alloy. Compd., 2017, 719: 242
[130] Shao W T, Jiang B L, Fang A C.Effects of sodium tetraborate in the electrolyte systems on micro-arc oxidation of magnesium alloy[J]. Rare Met. Mater. Eng., 2016, 45: 918(邵文婷, 蒋百灵, 房爱存. 镁合金微弧氧化体系中四硼酸钠的作用机理研究[J]. 稀有金属材料与工程, 2016, 45: 918)
[131] Zhang R F, Zhang S F, Shen Y L, et al.Influence of sodium borate concentration on properties of anodic coatings obtained by micro arc oxidation on magnesium alloys[J]. Appl. Surf. Sci., 2012, 258: 6602
[132] Rehman Z U, Uzair M, Lim H T, et al.Structural and electrochemical properties of the catalytic CeO2 nanoparticles-based PEO ceramic coatings on AZ91 Mg alloy[J]. J. Alloy. Compd., 2017, 726: 284
[133] Yang X F, Tian L H, Cao S, et al.The influence of nanometer TiO2 doping on AZ91D magnesium alloy micro-arc oxidation membrane morphology[J]. Mater. Mech. Eng., 2013, 37(10): 79(杨晓飞, 田林海, 曹盛等. 纳米TiO2掺杂对AZ91D镁合金微弧氧化膜形貌及性能的影响[J]. 机械工程材料, 2013, 37(10): 79)
[134] Liu D J, Jiang B L, Liu Z, et al.Effect of nanosilica additive on microstructure and corrosion resistance of micro-arc oxidation of magnesium alloy[J]. J. Mater. Prot., 2013, 46(7): 8(刘东杰, 蒋百灵, 刘政等. 纳米SiO2添加剂对镁合金微弧氧化陶瓷层组织结构及耐蚀性的影响[J]. 材料保护, 2013, 46(7): 8)
[135] Wang S Y, Si N C, Xia Y P, et al.Influence of nano-SiC on microstructure and property of MAO coating formed on AZ91D magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 1926
[136] Cui X J, Yang R S, Li M T, et al.Structure and properties of a micro-arc oxidation coating coupled with Nano-Al2O3 particles on AZ31B magnesium alloy[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 73(崔学军, 杨瑞嵩, 李明田. 纳米Al2O3掺杂AZ31B镁合金表面微弧氧化膜的结构与性能[J]. 中国腐蚀与防护学报, 2016, 36: 73)
[137] Mandelli A, Bestetti M, Da Forno A, et al.A composite coating for corrosion protection of AM60B magnesium alloy[J]. Surf. Coat. Technol., 2011, 205: 4459
[138] Yang Z C, Wu X Q, Xie F Q, et al.Tribological properties of MAO coating with Nano-graphite on ZM5 magnesium alloy[J]. China Surf. Eng., 2013, 26(2): 45(杨志成, 吴向清, 谢发勤等. 纳米石墨改性ZM5镁合金微弧氧化陶瓷层摩擦磨损性能[J]. 中国表面工程, 2013, 26(2): 45)
[139] Wen C L, Zhan X Z, Huang X G, et al.Characterization and corrosion properties of hydroxyapatite/graphene oxide bio-composite coating on magnesium alloy by one-step micro-arc oxidation method[J]. Surf. Coat. Technol., 2017, 317: 125
[140] Zhang R Z, Jia X J, Tang M Q, et al.Effect of TiN particles on micro-arc oxidation process and film properties of magnesium alloy[J]. Surf. Technol., 2017, 46(9): 81(张瑞珠, 贾新杰, 唐明奇等. TiN颗粒对镁合金微弧氧化过程及膜层性能的影响[J]. 表面技术, 2017, 46(9): 81)
[141] Mashtalyar D V, Gnedenkov S V, Sinebryukhov S L, et al.Plasma electrolytic oxidation of the magnesium alloy MA8 in electrolytes containing TiN nanoparticles[J]. J. Mater. Sci. Technol., 2017, 33: 461
[142] Ouyang K N.Influence of rare-earth oxide particles on the corrosion resistance of ceramic coatings produced on AZ91D magnesium alloy by micro-arc oxidation [D]. Beijing: Beijing University of Chemical Technology, 2015(欧阳珂宁. 稀土氧化物颗粒对AZ91D镁合金微弧氧化膜层耐蚀性能的影响 [D]. 北京: 北京化工大学, 2015)
[143] Lou B S, Lin Y Y, Tseng C M, et al.Plasma electrolytic oxidation coatings on AZ31 magnesium alloys with Si3N4 nanoparticle additives[J]. Surf. Coat. Technol., 2017, 332: 358
[144] Zhang R F, Wang F Y, Hu C Y, et al.Research progress in sealing treatment of anodic coatings formed on magnesium alloys[J]. J. Mater. Eng., 2007, (11): 82(张荣发, 王方圆, 胡长员等. 镁合金阳极氧化膜封孔处理的研究进展[J]. 材料工程, 2007, (11): 82)
[145] Li Y, Niu L Y, Gao G L, et al.Effect of processing parameters of microarc oxidation and sealing treatment on corrosion resistance of magnesium alloy[J]. Surf. Technol., 2008, 37(6): 14(李勇, 牛丽媛, 高光亮等. 微弧氧化工艺及封孔处理对镁合金耐蚀性能的影响[J]. 表面技术, 2008, 37(6): 14)
[146] Jiang B L, Zhang S F, Wu G J.The study of the corrosion resistance of the ceramic coatings formed by micro-arc oxidation on the Mg-base alloy[J]. J. Chin. Soc. Corros. Prot., 2002, 22: 300(蒋百灵, 张淑芬, 吴国建. 镁合金微弧氧化陶瓷层耐蚀性的研究[J]. 中国腐蚀与防护学报, 2002, 22: 300)
[147] Kim S J, Kim J I, Okido M.Sealing effects of anodic oxide films formed on Mg-Al alloys[J]. Korean J. Chem. Eng., 2004, 21: 915
[148] Yuan B, Yuan S, Jiang B L, et al.Corrosion resistance of magnesium alloy with complex surface-modifying micro-arc oxidation coating and organic coating studied by neutral salt spraying[J]. Mater. Prot., 2006, 39(9): 15(袁兵, 袁森, 蒋百灵等. 镁合金微弧氧化及后续涂装耐盐雾腐蚀的研究[J]. 材料保护, 2006, 39(9): 15)
[149] Jiang D, Zhou H, Wan S, et al.Fabrication of superhydrophobic coating on magnesium alloy with improved corrosion resistance by combining micro-arc oxidation and cyclic assembly[J]. Surf. Coat. Technol., 2018, 339: 155
[150] Zhang C L, Zhang F, Song L, et al.Corrosion resistance of a superhydrophobic surface on micro-arc oxidation coated Mg-Li-Ca alloy[J]. J. Alloy. Compd., 2017, 728: 815
[151] Cui X J, Lin X Z, Liu C H, et al.Fabrication and corrosion resistance of a hydrophobic micro-arc oxidation coating on AZ31 Mg alloy[J]. Corros. Sci., 2015, 90: 402
[152] Cui X J, Yang R S, Liu C H, et al.Structure and corrosion resistance of modified micro-arc oxidation coating on AZ31B magnesium alloy[J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 814
[153] Cui L Y, Gao S D, Li P P, et al.Corrosion resistance of a self-healing micro-arc oxidation/polymethyltrimethoxysilane composite coating on magnesium alloy AZ31[J]. Corros. Sci., 2017, 118: 84
[154] Chen N N, Wang Y H, Zhong L, et al.Anticorrosion performance of super-Hydrophobic complex film of graphene/stearic acid on AZ91 Mg-alloy[J]. Chin. J. Mater. Res., 2017, 31: 751(陈宁宁, 王燕华, 钟莲等. 石墨烯/硬脂酸超疏水复合膜层的防腐性能[J]. 材料研究学报, 2017, 31: 751)
[155] Mohedano M, Blawert C, Zheludkevich M L.Cerium-based sealing of PEO coated AM50 magnesium alloy[J]. Surf. Coat. Technol., 2015, 269: 145
[156] Van Phuong N, Fazal B R, Moon S.Cerium-and phosphate-based sealing treatments of PEO coated AZ31 Mg alloy[J]. Surf. Coat. Technol., 2017, 309: 86
[157] Liu F, Shan D Y, Song Y W, et al.Corrosion behavior of the composite ceramic coating containing zirconium oxides on AM30 magnesium alloy by plasma electrolytic oxidation[J]. Corros. Sci., 2011, 53(11): 3845
[158] Song Y W, Dong K H, Shan D Y, et al.Investigation of a novel self-sealing pore micro-arc oxidation film on AM60 magnesium alloy[J]. J. Magnes. Alloy., 2013, 1: 82
[159] Cui X J, Liu C H, Yang R S, et al.Self-sealing micro-arc oxidation coating on AZ91D Mg alloy and its formation mechanism[J]. Surf. Coat. Technol., 2015, 269: 228
[160] Chen H, Huang J, Chen Y N, et al.The research on microstructure and corrosion resistance of applied electricity with self-sealing and micro-arc oxidation coatings of AZ91D magnesium alloys[J]. Rare Met. Mater. Eng., 2017, 46: 3098(陈宏, 黄杰, 陈永楠等. AZ91D镁合金外加电场下自封孔微弧氧化膜层微观形貌及耐蚀性[J]. 稀有金属材料与工程, 2017, 46: 3098)
[161] Chen H, Huang J, Chen Y N, et al.Effect of secondary voltage on micro-arc oxidation sealing of AZ91D magnesium alloy[J]. Surf. Technol., 2017, 46(5): 12(陈宏, 黄杰, 陈永楠等. 二次电压对AZ91D镁合金微弧氧化封孔的影响[J]. 表面技术, 2017, 46(5): 12)
[162] Rehman Z U, Shin S H, Hussain I, et al.Structure and corrosion properties of the two-step PEO coatings formed on AZ91D Mg alloy in K2ZrF6-based electrolyte solution[J]. Surf. Coat. Technol., 2016, 307: 484
[163] Yang W, Ke P L, Fang Y, et al.Microstructure and properties of duplex (Ti:N)-DLC/MAO coating on magnesium alloy[J]. Appl. Surf. Sci., 2013, 270: 519
[164] Cui X J, Ping J, Zhang Y J, et al.Structure and properties of newly designed MAO/TiN coating on AZ31B Mg alloy[J]. Surf. Coat. Technol., 2017, 328: 319
[165] Lu X Y, Feng X G, Zuo Y, et al.Improvement of protection performance of Mg-rich epoxy coating on AZ91D magnesium alloy by DC anodic oxidation[J]. Prog. Org. Coat., 2017, 104: 188
[166] Fan X Z, Xu J Y, Wang Y, et al.Preparation and corrosion resistance of MAO layer/Yb2SiO5 composite coating on Mg alloy[J]. Surf. Coat. Technol., 2014, 240: 118
[167] Ezhilselvi V, Balaraju J N, Subramanian S.Chromate and HF free pretreatment for MAO/electroless nickel coating on AZ31B magnesium alloy[J]. Surf. Coat. Technol., 2017, 325: 270
[168] Zhao L B, Li Q N, Hong Y P, et al.Research status of micro-arc oxidation compound machining technology for aluminum and magnesium alloy[J]. Hot Work. Technol., 2016, 45(12): 15(赵隆滨, 黎清宁, 洪雅萍等. 铝、镁合金微弧氧化复合加工技术研究概况[J]. 热加工工艺, 2016, 45(12): 15)
[169] Wang X M, Zhu L Q, Liu H C, et al.Influence of surface pretreatment on the anodizing film of Mg alloy and the mechanism of the ultrasound during the pretreatment[J]. Surf. Coat. Technol., 2008, 202: 4210
[170] Krishna L R, Poshal G, Jyothirmayi A, et al.Compositionally modulated CGDS+MAO duplex coatings for corrosion protection of AZ91 magnesium alloy[J]. J. Alloy. Compd., 2013, 578: 355
[171] Cai J S, Cao F H, Chang L R, et al.The preparation and corrosion behaviors of MAO coating on AZ91D with rare earth conversion precursor film[J]. Appl. Surf. Sci., 2011, 257: 3804
[172] Hariprasad S, Gowtham S, Arun S, et al.Fabrication of duplex coatings on biodegradable AZ31 magnesium alloy by integrating cerium conversion (CC) and plasma electrolytic oxidation (PEO) processes[J]. J. Alloy. Compd., 2017, 722: 698
[173] Song D F, Qi W J, Long S Y, et al.Effects of pre-treatments on micro-arc oxidation film of die casting magnesium alloy[J]. Surf. Technol., 2012, 41(3): 5(宋东福, 戚文军, 龙思远等. 预处理对压铸镁合金微弧氧化膜的影响[J]. 表面技术, 2012, 41(3): 5)
[174] Gheytani M, Bagheri H R, Masiha H R, et al.Effect of SMAT preprocessing on MAO fabricated nanocomposite coating[J]. Surf. Eng., 2014, 30: 244
[175] Chen L L, Gu Y H, Liu L, et al.Effect of ultrasonic cold forging technology as the pretreatment on the corrosion resistance of MAO Ca/P coating on AZ31B Mg alloy[J]. J. Alloy. Compd., 2015, 635: 278
[176] Wang L Q, Zhou J S, Liang J, et al.Microstructure and corrosion behavior of plasma electrolytic oxidation coated magnesium alloy pre-treated by laser surface melting[J]. Surf. Coat. Technol., 2012, 206: 3109
[177] Wei F F, Zhang W, Zhang T, et al.Effect of variations of Al content on microstructure and corrosion resistance of PEO coatings on Mge-Al alloys[J]. J. Alloy. Compd., 2017, 690: 195
[178] Chen Y, Yang Y G, Zhang W, et al.Influence of second phase on corrosion performance and formation mechanism of PEO coating on AZ91 Mg alloy[J]. J. Alloy. Compd., 2017, 718: 92
[179] Huang H J, Wei X W, Yang J X, et al.Influence of surface micro grooving pretreatment on MAO process of aluminum alloy[J]. Appl. Surf. Sci., 2016, 389: 1175
[180] Li K, Li W F, Zhang G G, et al.Influence of surface etching pretreatment on PEO process of eutectic Al-Si alloy[J]. Chin. J. Chem. Eng., 2015, 23: 1572
[1] LIU Yang, WU Jinyi, YAN Xiaoyu, CHAI Ke. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[2] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[5] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[6] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[7] YUE Liangliang, MA Baoji. Effect of Ultrasonic Surface Rolling Process on Corrosion Behavior of AZ31B Mg-alloy[J]. 中国腐蚀与防护学报, 2020, 40(6): 560-568.
[8] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[9] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[10] JIA Yizheng, WANG Baojie, ZHAO Mingjun, XU Daokui. Effect of Solid Solution Treatment on Corrosion and Hydrogen Evolution Behavior of an As-extruded Mg-Zn-Y-Nd Alloy in an Artificial Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(4): 351-357.
[11] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[12] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[13] ZHANG Yao, GUO Chen, LIU Yanhui, HAO Meijuan, CHENG Shiming, CHENG Weili. Electrochemical Corrosion Behavior of Extruded Dilute Mg-2Sn-1Al-1Zn Alloy in Simulated Body Fluid[J]. 中国腐蚀与防护学报, 2020, 40(2): 146-150.
[14] CAO Jingyi, WANG Zhiqiao, LI Liang, MENG Fandi, LIU Li, WANG Fuhui. Failure Mechanism of Organic Coating with Modified Graphene Under Simulated Deep-sea Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[15] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
No Suggested Reading articles found!