Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (1): 68-76    DOI: 10.11902/1005.4537.2018.033
Current Issue | Archive | Adv Search |
Effect of Al/Si Content on Corrosion of Ni-based Alloys in Supercritical Water
Dongbai XIE1,Youyu ZHOU2,Jintao LU3,Wen WANG2(),Shenglong ZHU2,Fuhui WANG4
1. Department of Forensic Science and Technology, Xinjiang Police College, Urumqi 830011, China
2. Laboratory of Corrosion and Protection, Institue of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. National Energy R&D Center of Clean and High-efficiency Fossil-fired Power Generation Technology, Xi′an Thermal Power Research Institute Co., Ltd., Xi′an 710032, China
4. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
Download:  HTML  PDF(12327KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The oxidation behavior of four Ni-Fe-xCr based alloys with different contents of Al/Si was studied in supercritical water at 700 ℃ under 25 MPa. Oxidation kinetics of the alloys was obtained after 200 h exposure. The surface oxide scales were characterized by SEM/EDS and XRD. The results showed that a protective chromia scale formed as the content of Cr increased up to 25% (mass fraction), which was stable during the test. The strengthening phase element-Si was beneficial to the quick formation of protective chromia scale, meanwhile the Al showed little effect on the stability of protective chromia scale.

Key words:  Ni-based alloy      Al/Si content      supercritical water      high temperature oxidation     
Received:  19 March 2018     
ZTFLH:  TG172  
Fund: Specific Fundamental Research Program for Strengthening Police with Science and Technology of the Ministry of Public Security(2017GABJC11);Key Laboratory of Impression Evidence Examination and Identification Technology, Ministry of Public Security, People's Republic of China and Research Found of Xi'an Thermal Power Research Institute Co., Ltd.
Corresponding Authors:  Wen WANG     E-mail:  wen@imr.ac.cn

Cite this article: 

Dongbai XIE,Youyu ZHOU,Jintao LU,Wen WANG,Shenglong ZHU,Fuhui WANG. Effect of Al/Si Content on Corrosion of Ni-based Alloys in Supercritical Water. Journal of Chinese Society for Corrosion and protection, 2019, 39(1): 68-76.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.033     OR     https://www.jcscp.org/EN/Y2019/V39/I1/68

AlloyCrAlTiSiMoNbWFeMnNi
20Cr9Al200.91.00.020.81.00.5250.4Bal.
20Cr13Al201.31.00.020.81.00.5250.4Bal.
25Cr5Si250.91.00.050.81.00.5250.4Bal.
25Cr2Si250.91.00.020.81.00.525

0.4

Bal.
Table 1  Nominal compositions of four test nickle-based alloys (mass fraction / %)
Fig.1  Oxidation kinetics curves of the alloys in supercritical water
Fig.2  XRD patterns of 20Cr9Al (a), 20Cr13Al (b), 25Cr5Si (c) and 25Cr2Si (d) after oxidation in supercritical water for 50 and 200 h
Fig.3  Surface morpholoigies of 20Cr9Al (a) and 20Cr13Al (b) after 25 h exposure in supercritical water and local EDS analysis results of areas I (c), II (d), in Fig.3a, III (e), IV (f) and V (g) in Fig.3b
Fig.4  Surface morpholoigies of 20Cr9Al (a) and 20Cr13Al (b) after 100 h exposure in supercritical water and local EDS analysis results of areas I (c), II (d) in Fig.4a and III (e) in Fig.4b
Fig.5  Surface morpholoigies of 25Cr5Si (a) and 25Cr2Si (b) after 25 h exposure in supercritical water and local EDS analysis results of areas I (c), II (d), III (e) in Fig.5a, IV (f) and V (g) in Fig.5b
Fig.6  Surface morpholoigies of 25Cr5Si (a) and 25Cr2Si (b) after 100 h exposure in supercritical water and local EDS analysis results of areas I (c), II (d) in Fig.6a, III (e) and IV (f) in Fig.6b
Fig.7  Cross-sectional morphology and elements profiles of 20Cr9Al alloy after 200 h exposure in supercritical water
Fig.8  Cross-sectional morphology and elements profiles of 20Cr13Al alloy after 200 h exposure in supercritical water
Fig.9  Cross-sectional and elements profiles of 25Cr5Si alloy after 200 h exposure in supercritical water
Fig.10  Cross-sectional morphologies of 25Cr2Si alloy after 50 h (a) and 200 h (b) exposure in supercritical water
[1] Lin F S, Wang Z Z, Wang B Z, et al. Research, application and development of domestic heat-resistant steels and alloys for power plants [J].J.Chin . Soc. Power Eng., 2010, 30: 235
[1] (林富生, 王治政, 王宝忠等. 中国电站用耐热钢及合金的研制、应用与发展 [J]. 动力工程学报, 2010, 30: 235
[2] Yang F. Speed up the research on new steel to ensure the steady development of ultra supercritical power plants [A]. Electric Power and Energy in China, Seminar on the New Steel for600/1000MW Ultra-supercritical Thermal Power Plants [C]. Yangzhou, 2009
[2] 杨富. 加快超超临界机组用新型钢开发确保超超临界机组稳步发展 [A]. 中国电机工程学会600/1000MW超超临界火电机组新型钢国产化研讨会 [C]. 扬州, 2009
[3] Zhai S H, Gao X L, Chen G F. Analysis of green power generation technologies [J]. Power Syst. Eng., 2007, 23(1): 9
[3] 翟慎会, 高秀丽, 陈桂芳. 环境友好型发电技术的特性分析 [J]. 电站系统工程, 2007, 23(1): 9
[4] Tang F, Dong B, Zhao M. USC unit development and application in China [J]. Elect. Power Constr., 2010, 31(1): 80
[4] 唐飞, 董斌, 赵敏. 超超临界机组在我国的发展及应用 [J]. 电力建设, 2010, 31(1): 80
[5] Viswanathan R, Sarver J, Tanzosh J M. Boiler materials for ultra-supercritical coal power plants-steamside oxidation [J]. J. Mater. Eng. Perform., 2006, 15: 255
[6] Wright I G, Dooley R B. A review of the oxidation behaviour of structural alloys in steam [J]. Int. Mater. Rev., 2010, 55: 129
[7] Berthod P, Aranda L, Mathieu S, et al. Influence of water vapour on the rate of oxidation of a Ni-25wt.% Cr alloy at high temperature [J]. Oxid. Met., 2013, 79: 517
[8] Tan L, Ren X, Sridharan K, et al. Corrosion behavior of Ni-base alloys for advanced high temperature water-cooled nuclear plants [J]. Corros. Sci., 2008, 50: 3056
[9] Zhang Q, Tang R, Li C, et al. Corrosion behavior of Ni-base alloys in supercritical water [J]. Nucl. Eng. Technol., 2009, 41: 107
[10] Machet A, Galtayries A, Zanna S, et al. XPS and STM study of the growth and structure of passive films in high temperature water on a nickel-base alloy [J]. Electrochim. Acta, 2004, 49: 3957
[11] Mougin J, Lucazeau G, Galerie A, et al. Influence of cooling rate and initial surface roughness on the residual stresses in chromia scales thermally grown on pure chromium [J]. Mater. Sci. Eng., 2001, A308: 118
[12] Chao J, González-Carrasco J L. The role of the surface roughness on the integrity of thermally generated oxide scales. Application to the A12O3/MA956 system [J]. Mater. Sci. Eng., 1997, A230: 39
[13] Kritzer P. Corrosion in high-temperature and supercritical water and aqueous solutions: a review [J]. J. Supercrit. Fluids, 2004, 29: 1
[14] Plugatyr A, Svishchev I M. Residence time distribution measurements and flow modeling in a supercritical water oxidation reactor: Application of transfer function concept [J]. J. Supercrit. Fluids, 2008, 44: 31
[15] Kritzer P, Boukis N, Dinjus E. Review of the corrosion of nickel-based alloys and stainless steels in strongly oxidizing pressurized high-temperature solutions at subcritical and supercritical temperatures [J]. Corrosion, 2000, 56: 1093
[16] Li M S. High Temperature Corrosion of Metal [M]. Beijing: Metallurgy Industry Press, 2001: 186
[16] 李美栓. 金属的高温腐蚀 [M]. 北京: 冶金工业出版社, 2001: 186
[17] Zhou C G, Yu J S, Gong S K, et al. Influence of water vapor on the isothermal oxidation behavior of low pressure plasma sprayed NiCrAlY coating at high temperature [J]. Surf. Coat. Technol., 2002, 161: 86
[18] Wu Y, Narita T. Oxidation behavior of the single crystal Ni-based superalloy at 900 ℃ in air and water vapor [J]. Surf. Coat. Technol., 2007, 202: 140
[19] H?nsel M, Quadakkers W J, Young D J. Role of water vapor in chromia-scale growth at low oxygen partial pressure [J]. Oxid. Met., 2003, 59: 285
[20] Asteman H, Svensson J E, Johansson L G, et al. Indication of chromium oxide hydroxide evaporation during oxidation of 304L at 873 K in the presence of 10% water vapor [J]. Oxid. Met., 1999, 52: 95
[21] Lobnig R E, Schmidt H P, Hennesen K, et al. Diffusion of cations in chromia layers grown on iron-base alloys [J]. Oxid. Met., 1992, 37: 81
[22] Huang J B, Wu X Q, Han E-H. Electrochemical properties and growth mechanism of passive films on Alloy 690 in high-temperature alkaline environments [J]. Corros. Sci., 2010, 52: 3444
[23] Birks N, Meier G H, Pettit F S. Introduction to the High-Temperature Oxidation of Metals [M]. 2nd Ed. Cambridge: Cambridge University Press, 2006
[1] LIU Xiao, WANG Hai, ZHU Zhongliang, LI Ruitao, CHEN Zhenyu, FANG Xudong, XU Fanghong, ZHANG Naiqiang. Oxidation Characteristics of Austenitic Heat-resistant Steel HR3C and Sanicro25 in Supercritical Water for Power Station[J]. 中国腐蚀与防护学报, 2020, 40(6): 529-538.
[2] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[3] FANG Xudong, LIU Xiao, XU Fanghong, LI Ruitao, ZHU Zhongliang, ZHANG Naiqiang. Oxidation Behavior in Supercritical Water of Domestic Austenitic Steel C-HRA-5 for Uultra-supercritical Power Stations[J]. 中国腐蚀与防护学报, 2020, 40(3): 266-272.
[4] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[5] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[6] Junjie XIA,Hongzhi NIU,Min LIU,Huazhen CAO,Guoqu ZHENG,Liankui WU. Enhancement of High Temperature Oxidation Resistance of Ti48Al5Nb Alloy via Anodic Anodization in NH4F Containing Ethylene Glycol[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[7] Ling WANG,Junhuai XIANG,Honghua ZHANG,Songlin QIN. High Temperature Oxidation Behavior of Three Co-20Re-xCr Alloys in 3.04×10-5 Pa Oxygen at 1000 and 1100 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[8] Dongbai XIE, Youyu ZHOU, Jintao LU, Wen WANG, Shenglong ZHU, Fuhui WANG. Effect of Cr Content on Oxidation of Ni-based Alloy in Supercritical Water[J]. 中国腐蚀与防护学报, 2018, 38(4): 358-364.
[9] Yue LI, Jian WANG, Yong ZHANG, Jingang BAI, Yadi HU, Yongfeng QIAO, Caili ZHANG, Peide HAN. Analysis of Initial Oxidation Process of 2205 Duplex Stainless Steel in Closed Container at High Temperature[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[10] Zhan ZHAO,Jingyang LI,Jianxin DONG,Zhihao YAO,Maicang ZHANG. Oxidation Behavior during High Temperature Homo-genization Treatment of Cast Ni-Fe Based Corrosion Resistant 925 Alloy[J]. 中国腐蚀与防护学报, 2017, 37(1): 1-8.
[11] Dongbai XIE,Guo SHAN. Rapid Identification of Liquid Accelerant in Fire Scene Environment[J]. 中国腐蚀与防护学报, 2017, 37(1): 74-80.
[12] Tiantian YANG,Jingjun XU,Yuhai QIAN,Meishuan LI. Preparation and Ultra-high Temperature Oxidation Resistance of Micro-laminated ZrC/MoSi2 Coating on Siliconized Graphite[J]. 中国腐蚀与防护学报, 2016, 36(5): 476-482.
[13] Jiapeng HUANG,Bin YANG,Hang WANG. Effect of Multiple Addition of Y, La and Ce on Oxidation Behavior of Ni-10Cr-5Al Alloy at 1000 ℃ in Air[J]. 中国腐蚀与防护学报, 2016, 36(5): 489-496.
[14] SHEN Zhao, ZHANG Lefu, ZHU Fawen, BAO Yichen. Corrosion Behavior of Candidate SCWR Fuel Cladding Materials[J]. 中国腐蚀与防护学报, 2014, 34(4): 301-306.
[15] YUAN Juntao, WANG Wen, ZHU Shenglong, WANG Fuhui. Oxidation Behavior of Super 304H Steel in Steam at 700~900 ℃[J]. 中国腐蚀与防护学报, 2014, 34(3): 218-224.
No Suggested Reading articles found!