Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (1): 59-67    DOI: 10.11902/1005.4537.2018.026
Current Issue | Archive | Adv Search |
Preparation and High Temperature Corrosion Behavior of Aluminized Nanocrystalline Coating on DD98M Alloy
Hao CHEN1,2,Qing CHEN1,Li XIN2(),Long SHI1,Shenglong ZHU2,Fuhui WANG3,4
1. College of Mechanical and Electrical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, China
2. Laboratory for Corrosion and Protection, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
3. School of Materials Science and Engineering, Northeastern University, Shenyang 110819, China
4. Shenyang National Laboratory for Materials Science, Shenyang 110016, China
Download:  HTML  PDF(14378KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A nanocrystalline coating of DD98M was firstly deposited on the surface of high temperature alloy DD98M via magnetron sputtering, then a thin layer of Al-5.2Si (mass fraction, %) was next deposited via multi-arc ion plating on top of the nanocrystalline coating, which was further subjected to vacuum diffusion treatment at 870 ℃ for 3 h, finally a two-layered aluminide coating composed of an outer β-NiAl layer and an inner γ'-Ni3Al layer was obtained on the DD98M alloy. The isothermal oxidation behavior at 1050 ℃ in air and hot corrosion performance in molten salts Na2SO4+25%K2SO4 at 900 ℃ of the plain DD98M alloy, the nanocrystalline coating or the two-layered aluminide coating coated DD98M alloy were comparatively investigated. Results revealed that after isothermal oxidation at 1050 ℃, mixed oxides of NiO, α-Al2O3, Ta0.8O2, CrTaO4 and NiAl2O4 formed on the surface of DD98M alloy, and the oxide scale cracked and spalled seriously. An oxide scale composed of α-Al2O3 with a small amount of NiAl2O4 formed on the surface of the nanocrystalline coating of DD98M alloy. A dense oxide scale of simplex α-Al2O3 formed on the surface of the two-layered aluminide coating. It seems that the bilayered aluminide coating prepared with tri-step process can significantly enhance the oxidation resistance of the DD98M alloy. In molten salts Na2SO4+25%K2SO4 at 900 ℃, catastrophic corrosion occurred for the plain DD98M alloy only after 20 h corrosion. The as-deposited and pre-oxidation nanocrystalline coating can improved the corrosion resistance of the alloy to certain extent. However, the two-layered aluminide coating can apparently improve the corrosion resistance of the DD98M alloy.

Key words:  DD98M alloy      nanocrystalline coating      AlSi coating      vacuum diffusion treatment      Isothermal oxidation      hot corrosion     
Received:  14 February 2018     
ZTFLH:  TG174  
Fund: Supported by National Natural Science Foundation of China(U1537107)
Corresponding Authors:  Li XIN     E-mail:  xli@imr.ac.cn

Cite this article: 

Hao CHEN,Qing CHEN,Li XIN,Long SHI,Shenglong ZHU,Fuhui WANG. Preparation and High Temperature Corrosion Behavior of Aluminized Nanocrystalline Coating on DD98M Alloy. Journal of Chinese Society for Corrosion and protection, 2019, 39(1): 59-67.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2018.026     OR     https://www.jcscp.org/EN/Y2019/V39/I1/59

Fig.1  Cross section (a) and fracture (b) morpholo-gies of as-deposited nanocrystalline/AlSi coating
Fig.2  Cross section (a) and XRD pattern (b) of nanocrysta-lline/AlSi coating annealed at 870 ℃ in vacuum for 3 h
Fig.3  Oxidation kinetics of DD98M alloy, nanocrystalline coating and duplex coating at 1050 ℃ in air
Fig.4  XRD patterns of DD98M alloy, nanocrystalline coat-ing and duplex coating after 100 h oxidation at 1050 ℃
Fig.5  Surface (a, c, e) and cross-sectional (b, d, f) morphologies of DD98M alloy (a, b), nanocrystalline coating (c, d) and duplex coating (e, f) after 100 h oxidation in air at 1050 ℃
Fig.6  Corrosion kinetics of DD98M alloy, two types of nanocrystalline coating and duplex coating in Na2SO4+25%K2SO4 salt at 900 ℃
Fig.7  Surface (a, c, e, g, i) and cross-sectional (b, d, f, h, j) morphologies of DD98M alloy (a, b), as-deposited coating (c, d), pre-oxidized coating (e~h) and duplex coating (i, j) after hot corrosion at 900 ℃ in Na2SO4+25%K2SO4 salt for 20, 80, 100 and 100 h, respectively
Fig.8  XRD patterns of DD98M alloy (a), as-deposited coating (b), pre-oxidized coating (c) and duplex coating (d) after hot corrosion at 900 ℃ in Na2SO4+25%K2SO4 salt for 20, 80, 100 and 100 h, respectively
[1] Hu Z Q, Liu L R, Jin T, et al. Development of the Ni-base single crystal superalloys [J]. Aeroengine, 2005, 31(3): 1
[1] 胡壮麒, 刘丽荣, 金涛等. 镍基高温合金的发展 [J]. 航空发动机, 2005, 31(3): 1
[2] Shi L, Xin L, Wang F H, et al. Influences of nanocrystalline coating on hot corrosion behavior of DD98M alloy [J]. China Surf. Eng., 2017, 30(5): 1
[2] 时龙, 辛丽, 王福会等. 纳米晶涂层对DD98M合金热腐蚀行为的影响 [J]. 中国表面工程, 2017, 30(5): 1)
[3] Das D K, Murphy K S, Ma S W, et al. Formation of secondary reaction zones in diffusion aluminide-coated Ni-base single-crystal superalloys containing ruthenium [J]. Metall. Mater. Trans., 2008, 39A: 1647
[4] Angenete J, Stiller K, Bakchinova E. Microstructural and microchemical development of simple and Pt-modified aluminide diffusion coatings during long term oxidation at 1050 ℃ [J]. Surf. Coat. Technol., 2004, 176: 272
[5] Shi L, Li X, Wang F H, et al. Oxidation behavior of sputtered DD98M nanocrystalline coating at 1000 ℃ [J]. Oxid. Met., 2016, 86: 263
[6] Shi L, Li X, Wang X Y, et al. Influences of MCrAlY coatings on oxidation resistance of single crystal superalloy DD98M and their inter-diffusion behaviors [J]. J. Alloy. Compd., 2015, 649: 515
[7] Bai B, Guo H B, Peng H, et al. Cyclic oxidation and interdiffusion behavior of a NiAlDy/RuNiAl coating on a Ni-based single crystal superalloy [J]. Corros. Sci., 2011, 53: 2721
[8] Wang J L, Chen M H, Zhu S L, et al. Ta effect on oxidation of a nickel-based single-crystal superalloy and its sputtered nanocrystalline coating at 900-1100 ℃ [J]. Appl. Surf. Sci., 2015, 345: 194
[9] Wang J L, Chen M H, Yang L L, et al. Comparative study of oxidation and interdiffusion behavior of AIP NiCrAlY and sputtered nanocrystalline coatings on a nickel-based single-crystal superalloy [J]. Corros. Sci., 2015, 98: 530
[10] Wang X Y, Xin L, Wang F H, et al. Influence of sputtered nanocrystalline coating on oxidation and hot corrosion of a nickel-based superalloy M951 [J]. J. Mater. Sci. Technol., 2014, 30: 867
[11] Yang L L, Chen M H, Wang J L, et al. A duplex nanocrystalline coating for high-temperature applications on single-crystal superalloy [J]. Corros. Sci., 2016, 102: 72
[12] Lou H Y, Wang F H, Zhu S L, et al. Oxide formation of K38G superalloy and its sputtered micrograined coating [J]. Surf. Coat. Technol., 1994, 63: 105
[13] Wagner C. Reaktionstypen bei der oxydation von legierungen [J]. Z Elektrochem., 1959, 63: 772
[14] Jackson R W, Lipkin D M, Pollock T M. The oxidation and rumpling behavior of overlay B2 bond coats containing Pt, Pd, Cr and Hf [J]. Surf. Coat. Technol., 2013, 221: 13
[15] He J, Luan Y, Guo H B, et al. The role of Cr and Si in affecting high-temperature oxidation behaviour of minor Dy doped NiAlalloys [J]. Corros. Sci., 2013, 77: 322
[16] Zhou Z M, Peng H, Zheng L, et al. Improved oxide scale adherence of low-Pt/Hf co-doped β-NiAlCrSi coating on superalloy IC21 at 1200 °C [J]. Corros. Sci., 2016, 105: 78
[17] Kamide H, Tanaka Y. Effect of Si content on cyclic hot corrosion of NiAl in fused Na2SO4-NaCl mixture [J]. J. Jpn. Inst. Met., 1993, 57: 533
[18] Hodge P E, Miller R A, Gedwill M A. Evaluation of the hot corrosion behavior of thermal barrier coatings [J]. Thin Solid Films, 1980, 73: 447
[19] Kvernes I, Forseth S. Corrosion mechanisms of ceramic coatings in diesel engines [J]. Mater. Sci. Eng., 1987, 88: 61
[20] Navas G, Viloria L. Laboratory and field corrosion behavior of coatings for turbine blades [J]. Surf. Coat. Technol., 1997, 94/95: 161
[21] Zheng X J, Cao T L, Shi S T. Fused salt electrolytic co-deposition of Al and Si and high temperature corrosion resistance of Si-containing aluminium coatings [J].
[21] Chin J.. Soc. Corros. Prot., 1986, 6: 249
[21] 郑学进, 曹铁梁, 石声泰. 熔盐电解共渗铝硅及渗层的抗高温腐蚀性能 [J]. 中国腐蚀与防护学报, 1986, 6: 249
[1] CHEN Chao,LIANG Yanfen,LIANG Tianquan,MAN Quanyan,LUO Yidong,ZHANG Xiuhai,ZENG Jianmin. Research Progress on Hot Corrosion of Rare Earth Oxides Co-doped ZrO2 Ceramic Coatings in Molten Na2SO4+NaVO3 Salts[J]. 中国腐蚀与防护学报, 2019, 39(4): 291-298.
[2] Lijia YU,Wenping LIANG,Hao LIN,Qiang MIAO,Biaozi HUANG,Shiyu CUI. Evaluation of Hot Corrosion Behavior of Laser As-remelted YSZ Thermal Barrier Coatings at 950 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 77-82.
[3] Xijing WANG, Boshi WANG, Chao YANG, Yan YANG, Bin SHEN. Hot Corrosion of Pure Nickel and Its Weld Joints in Molten Na2SO4-K2SO4 Salts[J]. 中国腐蚀与防护学报, 2018, 38(5): 495-501.
[4] Xizhong WANG,Jianhao WU,Hui PENG,Hongbo GUO,Shengkai GONG. Hot-gas Corrosion Resistance of La2Ce2O7/8YSZ Duble-ceramic-layered Thermal Barrier Coating[J]. 中国腐蚀与防护学报, 2017, 37(1): 36-40.
[5] Guangming LIU,Kangsheng LIU,Xiaofei MAO,Zhongping WAN,Jianhang HUANG,Mingming YU,Yuankui WANG. Hot Corrosion of T91 Steel in Molten Mixture of KCl+Na2SO4+K2SO4[J]. 中国腐蚀与防护学报, 2017, 37(1): 23-28.
[6] Bo YANG,Maodong LI,Guangming LIU,Yuankui WANG,Kangsheng LIU,Wei ZHAI,Jianhang HUANG. Hot Corrosion Behavior of Inconel 625/NiCr Coating Prepared by HOVF[J]. 中国腐蚀与防护学报, 2016, 36(5): 483-488.
[7] WU Duoli, ZHANG Hongyu, WEI Hua, ZHENG Qi, JIN Tao, SUN Xiaofeng. Hot Corrosion Behavior of Four Modified Aluminide Coatings on DZ38G Alloy[J]. 中国腐蚀与防护学报, 2014, 34(6): 502-506.
[8] CUI Yuhui, HU Rui, ZHANG Tiebang, LI Jian, KOU Hongchao, LI Jinshan. MICROSTRUCTURE OF Fe-BASED AMORPHOUS AND NANOCRYSTALLINE COATINGS AND ITS CORROSION RESISTANCE IN H2O2 SOLUTION[J]. 中国腐蚀与防护学报, 2012, 32(4): 317-321.
[9] WANG Li,LIU Chunyang,HAN Zhenyu, TONG Wenwei. HOT CORROSION BEHAVIOR AND EVALUATION OF TURBINE COMPONENTS AND MATERIALS USED FOR GAS TURBINE ENGINE[J]. 中国腐蚀与防护学报, 2011, 31(5): 399-403.
[10] XU Yangtao, XIA Tiandong, YAN Jianqiang. EFFECT OF ALLOYING ELEMENTS TO HOT CORROSION BEHAVIOR OF NOVEL Co-Al-W SUPERALLOY[J]. 中国腐蚀与防护学报, 2010, 30(6): 457-464.
[11] ZHANG Zehai, MENG Jie. ISOTHERMAL OXIDATION BEHAVIOR OF A SINGLE CRYSTAL NICKEL-BASED SUPERALLOY[J]. 中国腐蚀与防护学报, 2010, 30(4): 337-340.
[12] WEI Hua; HUANG Liang; LIANG Jingjing; SUN Xiaofeng; GUAN Hengrong; HU Zhuangqi. EFFECT OF Re ON THE HOT-CORROSION BEHAVIOR OF A NiCrAlY OVERLAY COATING[J]. 中国腐蚀与防护学报, 2010, 30(2): 150-154.
[13] ZHU Ming LI Meishuan ZHOU Yanchun. HOT CORROSION RESISTANCE OF Cr1-xAlxN COATINGS ON A Ti3Al BASED ALLOY IN DEPOSITED (Na2SO4+K2SO4) MOLTEN SALT AT 800 ℃[J]. 中国腐蚀与防护学报, 2009, 29(4): 306-311.
[14] ;. STUDY OF HOT CORROSION RESISTANCES OF TWO NICKEL BASE SUPERALLOYS FOR DIRECTIONAL SOLIDIFICATION[J]. 中国腐蚀与防护学报, 2008, 28(5): 277-281 .
[15] . High Temperature Oxidation and Hot Corrosion Behavior of Enamel/Sputtered NiCrAlY Composite Coating[J]. 中国腐蚀与防护学报, 2005, 25(6): 344-350 .
No Suggested Reading articles found!