Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (1): 43-50    DOI: 10.11902/1005.4537.2017.215
Current Issue | Archive | Adv Search |
Crevice Corrosion Behavior of Several Super Stainless Steels in a Simulated Corrosive Environment of Flue Gas Desulfurization Process
Changgang WANG1,Jie WEI1,Xin WEI1,Xin MU1,Fang XUE1,Junhua DONG1(),Wei KE1,Guoping LI2
1. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
2. Technology Center of Taiyuan Iron and Steel Group Co. Ltd., Taiyuan 030003, China
Download:  HTML  PDF(16740KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The crevice corrosion of 316, 904L, 254sMo and 2507 stainless steels in a liquid of the so called green death at 70 ℃, which aims to simulate the corrosive environment of flue gas desulfurization process, was comparatively investigated by means of electrochemical cyclic polarization test and SEM. The results showed that 254sMo and 2507 stainless steel have excellent resistance to crevice corrosion, while the crevice corrosion induced damage of SS316 and SS904L is serious. The "lace cover" structures were observed on the edges of the gap of SS316 and SS904L, but not on that of SS254sMo and SS2507. At the bottom of crevice corrosion pit, duplex super stainless steel 2507 exhibits galvanic corrosion characteristics.

Key words:  super stainless steel      flue gas desulfurization      death green solution      artificial crevice electrode      crevice corrosion     
Received:  25 December 2017     
ZTFLH:  TG174  
Fund: Supported by National Natural Science Foundation of China(51071160);National High Technology Research and Development Plan(2015AA034301)
Corresponding Authors:  Junhua DONG     E-mail:  jhdong@imr.ac.cn

Cite this article: 

Changgang WANG,Jie WEI,Xin WEI,Xin MU,Fang XUE,Junhua DONG,Wei KE,Guoping LI. Crevice Corrosion Behavior of Several Super Stainless Steels in a Simulated Corrosive Environment of Flue Gas Desulfurization Process. Journal of Chinese Society for Corrosion and protection, 2019, 39(1): 43-50.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.215     OR     https://www.jcscp.org/EN/Y2019/V39/I1/43

SteelCCrNiMnSiPSMoNCuFePREN
3160.0516.910.61.600.500.0310.0062.05------Bal.23.665
904L0.0220.125.32.001.000.0450.0354.04---1.32Bal.33.432
254sMo0.0219.717.81.000.800.030.016.200.190.75Bal.43.2
25070.0325.47.011.000.800.0350.0204.200.270.50Bal.43.58
Table 1  Elemental compositions and PREN values of four tested stainless steels (mass fraction / %)
Fig.1  Schematic diagram of the artificial gap electrode: (a) polyethylene bite unit, (b) stainless steel elect-rode plate, (c) physical photograph
Fig.2  Cyclic voltammetric curves of artificial gap electrodes of 316 (a), 904L (b), 254sMo (c) and 2507 (d) stainless steels in death green liquid at 70 ℃
Fig.3  Statistics of crevice corrosion of four stainless steels
Fig.4  Statistical counts of crevice corrosion depth of four stainless steels
Fig.5  Corrosion morphology of 316 stainless steel artificial gap electrode after cyclic voltammetry in death green liquid at 70 ℃ (a) and the magnified images of the areas I (b), II (c) in Fig.5a, III (d) and IV (e) in Fig.5b
Fig.6  Corrosion morphology of 904L stainless steel artificial gap electrode after cyclic voltammetry in death green liquid at 70 ℃ (a) and the magnified images of the areas I (b), II (c), III (d) in Fig.6a, IV in Fig.6b (e) and V in Fig.6c (f)
Fig.7  Corrosion morphology of 254sMo stainless steel artificial gap electrode after cyclic voltammetry in death green liquid at 70 ℃ (a) and the magnified images of the areas I (b), II (c) in Fig.7a, III (d) and IV (e) in Fig.7b
Fig.8  Corrosion morphology of 2507 stainless steel artificial gap electrode after cyclic voltammetry in death green liquid at 70 ℃ (a) and the magnified images of the areas I (b), II (c) in Fig.8a, III (d) and IV (e) in Fig.8b
Fig.9  Schematic diagram of IR reduction mechanism for crevice corrosion of stainless steels[14,15]
[1] Han W. Safety and corrosion prevention of chimney after flue gas desulphurization [J]. Electr. Safety Technol., 2010, 12(8): 12
[1] 韩伟. 烟气脱硫改造后烟囱的安全性及其防腐 [J]. 电力安全技术, 2010, 12(8): 12
[2] Xu S Q. Dew point corrosion and material selection (2) [J]. Petrochem. Corros. Prot., 2000, 17(3): 1
[2] 许适群. 关于露点腐蚀及用钢的综述 (二) [J]. 石油化工腐蚀与防护, 2000, 17(3): 1
[3] He J J, Xiang X X. A review of chimney corrosion study and anticorrosion material research in WFGD [J]. Environ. Technol., 2011, 35(4): 33
[3] 何佳杰, 向贤伟. 湿法烟气脱硫中烟囱腐蚀及其防腐材料研究现状 [J]. 环境技术, 2011, 35(4): 33
[4] Gao W, Luo J M, Yang J J. Research progress and application of double phase stainless steel [J]. Ordnance Mater. Sci. Eng., 2005, 28(3): 61
[4] 高娃, 罗建民, 杨建君. 双相不锈钢的研究进展及其应用 [J]. 兵器材料科学与工程, 2005, 28(3): 61
[5] Xu Q. Corrosion-resisting alloy selection for flue gas desulfurization unit (FGD) [J]. Total Corros. Control, 2010, 24(10): 6
[5] 许青. 烟气脱硫(FGD)装置耐腐蚀合金的选择 [J]. 全面腐蚀控制, 2010, 24(10): 6
[6] Kim M T, Oh O Y, Chang S Y. Analysis of degradation of a super-austenitic stainless steel for flue gas desulfurization system after a fire accident [J]. Eng. Fail. Anal., 2008, 15: 575
[7] Han D, Jiang Y, Deng B, et al. Detecting critical crevice temperature for duplex stainless steels in chloride solutions [J]. Corrosion, 2011, 67: 025004
[8] Jamaluddin A M, Malika A U, Andijani I, et al. Crevice corrosion behavior of high-alloy stainless steels in a SWRO pilot plant [J]. Desalination, 2004, 171: 289
[9] Rajendran N, Rajeswari S. Super austenitic stainless steels-a promising replacement for the currently used type 316L stainless steel as the construction material for flue-gas desulphurization plant [J]. J. Mater. Sci., 1996, 31: 6615
[10] Zhang Y G, Li S Y, Fan H Q, et al. Corrosion behavior of stainless steel in flue gas desulphurization system [J]. Mater. Prot., 2010, 43(3): 64
[10] 张贻刚, 李淑英, 范洪强等. 不锈钢在烟气脱硫系统中的腐蚀行为 [J]. 材料保护, 2010, 43(3): 64
[11] Feng H. Research on corrosion behaviour of super austenitic stainless steel with high Mo and N in typically extreme environments [D]. Shenyang: Northeastern University Dissertations, 2014: 21
[11] 冯浩. 高钼高氮超级奥氏体不锈钢在典型极端环境中的腐蚀行为研究 [D]. 沈阳: 东北大学, 2014: 21
[12] Wang C G, Dong J H, Ke W, et al. Research on pitting corrosion behavior of copper in the solution with HCO3- and Cl- [J]. Acta Metall. Sin., 2012, 48: 1365
[12] 王长罡, 董俊华, 柯伟等. HCO3-和Cl-混合体系中Cu的点蚀行为研究 [J]. 金属学报, 2012, 48: 1365
[13] Wang C G, Dong J H, Ke W, et al. Effect of HCO3- and SO42- on the pitting corrosion behavior of Cu [J]. Acta Metall. Sin., 2012, 48: 85
[13] 王长罡, 董俊华, 柯伟等. HCO3-和SO42-对Cu点蚀行为的影响 [J]. 金属学报 2012, 48: 85
[14] Yang Y Z, Jiang Y M, Li J. Insitu investigation of crevice corrosion on UNS S32101 duplex stainless steel in sodium chloride solution [J]. Corros. Sci., 2013, 76: 163
[15] Al-khamis J N, Pickering H W. IR mechanism of crevice corrosion for alloy T-2205 duplex stainless steel in acidic-chloride media [J].
[15] J. Electrochem. Soc., 2001, 148: B314
[1] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[2] CHEN Dongxu, WU Xinqiang, HAN En-Hou. Research Progress of Crevice Corrosion and Crevice Corrosion Issues of Nuclear-grade Materials[J]. 中国腐蚀与防护学报, 2014, 34(4): 295-300.
[3] WU Zhibin, WEI Yinghua, LI Jing, SUN Chao. EFFECT OF SOLUTION STATE ON CATHODIC POLARIZATION BEHAVIOR OF Q345 STEEL BENEATH SIMULATED DISBONDED COATING[J]. 中国腐蚀与防护学报, 2012, 32(5): 369-374.
[4] YANG Jiaxing, ZHAO Ping, SUN Cheng, XU Jin. INFLUENCE OF SULPHATE REDUCING BACTERIA ON CREVICE CORROSION BEHAVIOR OF Q235 STEEL[J]. 中国腐蚀与防护学报, 2012, 32(1): 54-58.
[5] CHEN Xu; LI Xiaogang; DU Cuiwei; LIANG Ping. EFFECTS OF SOLUTION ENVIRONMENTS ON CORROSION BEHAVIORS OF X70 STEELS UNDER SIMULATED DISBONDED COATING[J]. 中国腐蚀与防护学报, 2010, 30(1): 35-40.
[6] ;. Effectiveness of Cathodic Protection under Simulated Disbonded Coating on Pipelines[J]. 中国腐蚀与防护学报, 2007, 27(5): 257-262 .
[7] Yiquan Song; Cuiwei Du; Xiaogang Li; Junwei Wu; Yonggui Yan. THE INFLUENCE OF HUNK OF COATING DEFECT ON CORROSIVE CHARACTERISTIC OF CARBON STEELS AND EFFECTIVENESS OF CATHODIC PROTECTION[J]. 中国腐蚀与防护学报, 2005, 25(2): 74-78 .
[8] Jingmao Zhao; Yu Zuo; Jinping Xiong. CORROSION BEHAVIOR OF MILD STEEL IN SIMULATED SOLUTIONS WITHIN PITS AND CREVICES[J]. 中国腐蚀与防护学报, 2002, 22(4): 193-197 .
[9] Fengzheng Li. CURRENT DISTRIBUTION IN A CATHODICALLY PROTECTED CREVICE[J]. 中国腐蚀与防护学报, 2000, 20(6): 338-343 .
[10] Jianzhong Yan. THE EFFECT OF LOCALIZED CORROSION ON FRETTINGATTACK OF 316l STAINLESS STEEL IN 0.9%NaCl SOLUTION[J]. 中国腐蚀与防护学报, 2000, 20(4): 237-242 .
[11] Zhengfeng Li. Potential Distribution Inside a Cathodically Protected Crevice[J]. 中国腐蚀与防护学报, 2000, 20(3): 129-134 .
[12] Qingdong Zhong. STUDY ON CREVICE CORROSION OF COPPER USING WIRE BEAM ELECTRODE[J]. 中国腐蚀与防护学报, 1999, 19(3): 189-192 .
[13] Liang Chenghao;Jin Shouxun(Dalian University of Technology). INFLUENCE OF IRON AS ALLOYING ELEMENT ON CREVICE CORROSION BEHAVIOR OF TITANIUM[J]. 中国腐蚀与防护学报, 1995, 15(3): 210-216.
No Suggested Reading articles found!