Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2019, Vol. 39 Issue (1): 36-42    DOI: 10.11902/1005.4537.2017.210
Current Issue | Archive | Adv Search |
Light-generated Cathodic Protection Properties of Fe2O3/TiO2 Nanocomposites for 304 Stainless Steel
Tong LIAO1,2,3,Zheng MA1,3,Leilei LI1,3,Xiumin MA1,3,Xiutong WANG1,3,Baorong HOU1,3()
1. Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Open Studio for Marine Corrosion and Protection, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
Download:  HTML  PDF(7072KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Fe2O3/TiO2 nanocomposites were fabricated by chemical bath deposition on the surface of the TiO2 nanotubes, which had been prepared on titanium foil via anodic oxidation method. Their morphology, phase constituent, composition, and light response were characterized by scanning electron microscopy (SEM), X-ray diffractometer (XRD), X-ray photoelectron spectroscopy (XPS) and ultraviolet-visible diffuse reflection spectrum (UV-vis DRS). Photoelectric properties of the nanocomposites were assessed by measuring open circuit potential (OCP) under intermittent illumination and photocurrent density versus time (i-t), as well as electrochemical impedance spectroscopy (EIS). Results indicate that the incorporation of Fe2O3 increases the utilization efficiency of visible light and strengthens the cathodic protection performance of the TiO2 nanotubes. In visible light, the open circuit potential of Fe2O3/TiO2 nanocomposite prepared in the bath of 0.05 mol/L Fe(NO3)3 is -740 mV, about 300 mV lower than that of the ordinary TiO2 nanotubes, a better cathodic protection effect for 304 stainless steel.

Key words:  photocathode protection      Fe2O3/TiO2 nanocomposite      304 stainless steel     
Received:  13 December 2017     
ZTFLH:  TG174  
Fund: Supported by National Basic Research Program of China((2014CB643304));Strategic Priority Research Program of the Chinese Academy of Sciences (Category A)((XDA13040401));Key Project of Chinese Academy of Engineering (2017-XZ-16)(2017-XZ-16)
Corresponding Authors:  Baorong HOU     E-mail:  baoronghou@163.com

Cite this article: 

Tong LIAO,Zheng MA,Leilei LI,Xiumin MA,Xiutong WANG,Baorong HOU. Light-generated Cathodic Protection Properties of Fe2O3/TiO2 Nanocomposites for 304 Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2019, 39(1): 36-42.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.210     OR     https://www.jcscp.org/EN/Y2019/V39/I1/36

Fig.1  Schematic illustration of the experimental setup for photoelectrochemical test
Fig.2  SEM images of pure TiO2 (a),Fe2O3/TiO2 (A) (b),Fe2O3/TiO2 (B) (c),Fe2O3/TiO2 (C) (d),Fe2O3/TiO2 (D) (e) and Fe2O3/TiO2 (E) (f), and EDS result of Fe2O3/TiO2 (C) (g)
Fig.3  XRD patterns of Fe2O3/TiO2 nanocomposites
Fig.4  Full XPS (a) of Fe2O3/TiO2 (C) and fine XPS of Ti 2p (b), O 1s (c) and Fe 2p (d)
Fig.5  UV-vis diffuse reflection spectra of pure TiO2 and Fe2O3/TiO2 nanocomposites
Fig.6  OCP variations of 304SS coupled with different photoanodes under intermittent illumination
Fig.7  Photocurrent density-time curves of different photoanodes
Fig.8  EIS plots of Fe2O3/TiO2 photoanodes (a), EIS of high frequency region (b) and equivalent circuit used for fitting EIS (c)
[1] Yuan J N, Tsujikawa S. Characterization of sol-gel-derived TiO2 coatings and their photoeffects on copper substrates [J]. J. Electrochem. Soc., 1995, 142: 3444
[2] Li S N, Fu J J. Improvement in corrosion protection properties of TiO2 coatings by chromium doping [J]. Corros. Sci., 2013, 68: 101
[3] Cui S W, Yin X Y, Yu Q L, et al. Polypyrrole nanowire/TiO2 nanotube nanocomposites as photoanodes for photocathodic protection of Ti substrate and 304 stainless steel under visible light [J]. Corros. Sci., 2015, 98: 471
[4] Nakamura R, Tanaka T, Nakato Y. Mechanism for visible light responses in anodic photocurrents at N-Doped TiO2 film electrodes [J].J. Phys. Chem., 2004, 108B: 10617
[5] Peng F, Cai L F, Huang L, et al. Preparation of nitrogen-doped titanium dioxide with visible-light photocatalytic activity using a facile hydrothermal method [J]. J. Phys. Chem. Solids, 2008, 69: 1657
[6] Nishikiori H, Hayashibe M, Fujii T. Visible light-photocatalytic activity of sulfate-doped titanium dioxide prepared by the sol-gel method [J]. Catalysts, 2013, 3: 363
[7] Yun H, Li J, Chen H B, et al. A study on the N-, S- and Cl-modified nano-TiO2 coatings for corrosion protection of stainless steel [J]. Electrochim. Acta, 2007, 52: 6679
[8] Sun M M, Chen Z Y, Yu J Q. Highly efficient visible light induced photoelectrochemical anticorrosion for 304 SS by Ni-doped TiO2 [J]. Electrochim. Acta, 2013, 109: 13
[9] Zhu J F, Zheng W, He B, et al. Characterization of Fe-TiO2 photocatalysts synthesized by hydrothermal method and their photocatalytic reactivity for photodegradation of XRG dye diluted in water [J].
[9] J. Mol. Catal., 2004, 216A: 35
[10] Sun H Q, Zhou G L, Liu S Z, et al. Visible light responsive titania photocatalysts codoped by nitrogen and metal (Fe, Ni, Ag, or Pt) for remediation of aqueous pollutants [J]. Chem. Eng. J., 2013, 231: 18
[11] Agorku E A, Mamba B B, Pandey A C, et al. Sulfur/gadolinium-codoped TiO2 nanoparticles for enhanced visible-light photocatalytic performance [J]. J. Nanomater, 2014, 2014: 289150
[12] Oppong O O B, Anku W W, Shukla S K, et al. Photocatalytic degradation of indigo carmine using Nd-doped TiO2-decorated graphene oxide nanocomposites [J].
[12] J. Sol-Gel Sci. Technol., 2016, 80: 38
[13] Meng F, Lu F. Effect of silver content on energy gap and phase structure of silver-titania thin films prepared by radio frequency magnetron sputtering [J]. J. Chin. Ceram. Soc., 2009, 37: 2130
[14] Khan M A, Han D H, Yang O B. Enhanced photoresponse towards visible light in Ru doped Titania nanotube [J]. Appl. Surf. Sci., 2009, 255: 3687
[15] Li H, Wang X T, Liu Y, et al. Ag and SnO2 co-sensitized TiO2 photoanodes for protection of 304SS under visible light [J]. Corros. Sci., 2014, 82: 145
[16] Park H, Bak A, Jeon T, et al. Photo-chargeable and dischargeable TiO2 and WO3 heterojunction electrodes [J]. Appl. Catal., 2012, 115-116B: 74
[17] Zhang L, Wang X T, Liu F G, et al. Photogenerated cathodic protection of 304ss by ZnSe/TiO2 NTs under visible light [J]. Mater. Lett., 2015, 143: 116
[18] Mane R S, Roh S J, Joo O S, et al. Improved performance of dense TiO2/CdSe coupled thin films by low temperature process [J]. Electrochim. Acta, 2005, 50: 2453
[19] Subasri R, Deshpande S, Seal S, et al. Evaluation of the performance of TiO-CeO bilayer coatings as photoanodes for corrosion protection of copper [J]. Electrochem. Solid-State Lett., 2006, 9: B1
[20] Kalanur S, Hwang Y, Joo O. Construction of efficient CdS-TiO2 heterojunction for enhanced photocurrent, photostability, and photoelectron lifetimes [J]. J. Colloid Interface Sci., 2013, 402: 94
[21] Townsend T K, Sabio E M, Browning N D, et al. Photocatalytic water oxidation with suspended alpha-Fe2O3 particles-effects of nanoscaling [J]. Energy Environ. Sci., 2011, 4: 4270
[22] Moulder J F, Chastain J, King R C. Handbook of X-Ray Photoelectron Spectroscopy [M]. Massachusetts: Perkin-Elmer, 1995
[23] Tan B J, Klabunde K J, Sherwood P M A. X-ray photoelectron spectroscopy studies of solvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobalt particles on alumina [J]. Chem. Mater., 2002, 2: 186
[24] Dai G P, Yu J G, Liu G. Synthesis and enhanced visible-light photoelectrocatalytic activity of p?n junction BiOI/TiO2 nanotube arrays [J].
[24] Phys J.. Chem. C, 2011, 115: 7339
[25] Bu Y Y, Chen Z Y, Yu J Q, et al. A novel application of g-C3N4 thin film in photoelectrochemical anticorrosion [J]. Electrochim. Acta, 2013, 88: 294
[26] Sun M M, Chen Z Y, Bu Y Y. Enhanced photoelectrochemical cathodic protection performance of H2O2-treated In2O3 thin-film photoelectrode under visible light [J]. Surf. Coat. Technol., 2015, 266: 79
[27] Lei C X, Liu Y, Zhou H, et al. Photogenerated cathodic protection of stainless steel by liquid-phase-deposited sodium polyacrylate/TiO2 hybrid films [J]. Corros. Sci., 2013, 68: 214
[28] Zhang L, Wang X T, Li H, et al. Photogenerated cathodic protection properties of CdSe-TiO2 composite material on 304 stainless steel [J]. Corros. Prot., 2015, 36: 258
[28] 张亮, 王秀通, 李红等. CdSe-TiO2复合材料对304不锈钢的光生阴极保护性能 [J]. 腐蚀与防护, 2015, 36: 258
[29] Sun M M, Chen Z Y, Bu Y Y. Enhanced photoelectrochemical cathodic protection performance of the C3N4 @In2O3 nanocomposite with quasi-shell-core structure under visible light [J]. J. Alloy. Compd., 2015, 618: 734
[1] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[2] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[3] Wenshan PENG,Jian HOU,Kangkang DING,Weimin GUO,Ri QIU,Likun XU. Corrosion Behavior of 304 Stainless Steel in Deep Sea Environment[J]. 中国腐蚀与防护学报, 2019, 39(2): 145-151.
[4] Hui LIU,Wei QIU,Bin LENG,Guojun YU. Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[5] Siqi ZHANG,Nan DU,Meifeng WANG,Shuaixing WANG,Qing ZHAO. Effect of Cathode Area on Stable Pitting Growth Rate of 304 Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 551-557.
[6] Yingjun AI,Nan DU,Qing ZHAO,Shixin HUANG,Liqiang WANG,Qingjie WEN. Effect of Temperature on Initiation of Metastable Pits and Geometric Features of Stable Pits for 304 Stainless Steel[J]. 中国腐蚀与防护学报, 2017, 37(2): 135-141.
[7] Yurong FANG,Chaoyang FU. Corrosion and Corrosion Inhibition of 304 Stainless Steel in Acidic FeCl3 Solution with Applied Inhibitor K2Cr2O7 and Ultrasonic Vibration[J]. 中国腐蚀与防护学报, 2015, 35(4): 305-310.
[8] YE Chao, DU Nan, TIAN Wenming, ZHAO Qing, ZHU Li. Effect of pH on Pitting Corrosion Process of 304 Stainless Steel in 3.5%NaCl Solution[J]. 中国腐蚀与防护学报, 2015, 35(1): 38-42.
[9] XU Hongmei, LIU Wei, CAO Lixin, SU Ge, GAO Rongjie. Preparation of ZnO/TiO2 Composite Film on 304 Stainless Steel and Its Photo-cathodic Protection Properties[J]. 中国腐蚀与防护学报, 2014, 34(6): 507-514.
[10] TIAN Wenming, DU Nan, ZHAO Qing. ELECTRONIC SPECKLE PATTERN INTERFEROMETRY MEASUREMENT OF 304 STAINLESS STEEL PITTING POTENTIAL[J]. 中国腐蚀与防护学报, 2012, 32(5): 431-436.
[11] LI Ji, ZHAO Lin, LI Bowen,ZHENG Liqun, HAN En-Hou. ELECTROCHEMICAL NOISE ANALYSIS OF 304 STAINLESS STEEL PITTING CORROSION IN FERRIC CHLORIDE SOLUTION[J]. 中国腐蚀与防护学报, 2012, 32(3): 235-240.
[12] WANG Hongfen, WANG Zhiqi, HONG Haixia, CHEN Shougang,YIN Yansheng. CORROSION RESISTANCE BEHAVIOR OF CERIUM-DOPED TiO2 FILM IN THE PRESENCE OF MARINE BACTERIUM SULFATE-REDUCING BACTERIA[J]. 中国腐蚀与防护学报, 2010, 30(6): 481-486.
[13] HUANG Wenjing; HUANG Hualiang; QIU Yubing; CHEN Zhenyu; GUO Xingpeng. EFFECT OF SIZE ON CORROSION BEHAVIOR OF MICRO-ELECTRODES[J]. 中国腐蚀与防护学报, 2010, 30(2): 141-144.
[14] . SEMICONDUCTING BEHAVIOR OF 304 STAINLESS STEEL IN ELECTROLYTE SOLUTION[J]. 中国腐蚀与防护学报, 2008, 28(6期): 341-344.
[15] . CORROSION BEHAVIOR OF NANOCRYSTALLIZED BULK 304 STAINLESS STEELI. THE RESEARCH ON ANTI-CHLORIDE ION ATTACK OF THE PASSIVE FILM[J]. 中国腐蚀与防护学报, 2007, 27(2): 80-83 .
No Suggested Reading articles found!