Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (5): 447-454    DOI: 10.11902/1005.4537.2017.201
Current Issue | Archive | Adv Search |
Effect of Peak Temperatures on Corrosion Behavior of Thermal Simulated Narrow-gap Weld Q690 High Strength Steel
Kai WANG1(), Yaoyong YI2, Qinghua LU1, Jianglong YI2, Zexin JIANG3, Jinjun MA3, Yu ZHANG4
1 School of Mechatronics Engineering, Foshan University, Foshan 528231, China
2 Guangdong Welding Institute (China-Ukraine E. O. Paton Institute of Welding), Guangzhou 510650, China
3 Guangzhou Shipyard International Co., Ltd., Guangzhou 511462, China
4 Institute of Research of Iron and Steel, Sha-steel, Zhangjiagang 215625, China
Download:  HTML  PDF(5713KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

According to the thermal cycle process of Q690 high strength steel by narrow-gap (NG) welding, the thermal simulated NG weldings were carried out by a Gleeble 3800 thermal simulation test machine to prepare weld joints with different HAZs of Q690 high strength steel at different peak temperature in a single thermal cycle. The parameters of thermal simulated NG welding are as follows: preheat temperature of 150 ℃, peak temperature (Tp) retention time of 1 s, t8/5 value of 14 s, with the variation of Tp as 500, 650, 850, 950 and 1350 ℃. The effect of welding parameters on the properties of Q690 high strength steel were investigated and the relationship between the micro-structural factors, mechanical properties and electrochemical behavior were discussed. The microstructure of the thermal simulated weld Q690 HSLA steel was observed by OM and SEM. The electrochemical behavior of them in a 3.5% (mass fraction) NaCl aqueous solution at room temperature was assessed by means of open circuit potential (OCP) measurement, electrochemical impedance spectroscopy (EIS), and potentiodynamic polarization measurement. The mechanical properties and electrochemical behavior of the Q690 steel HAZ at different Tp show a nonlinear variation with the increasing Tp, which were mainly depended on the microstructure characteristics such as the bainite transformation and grain size. The HAZ (Tp=850 ℃) has the best low temperature impact toughness, and with similar electrochemical behavior as the bare Q690 steel.

Key words:  Q690 high strength steel      narrow-gap welding      thermal simulation      microstructure      electrochemical corrosion     
Received:  24 November 2017     
ZTFLH:  TG115.6+2  
  TG174.3+6  
Fund: Supported by National Natural Science Foundation of China (51601043) and National Project of International S&T Cooperation Program (2014DFR50310)

Cite this article: 

Kai WANG, Yaoyong YI, Qinghua LU, Jianglong YI, Zexin JIANG, Jinjun MA, Yu ZHANG. Effect of Peak Temperatures on Corrosion Behavior of Thermal Simulated Narrow-gap Weld Q690 High Strength Steel. Journal of Chinese Society for Corrosion and protection, 2018, 38(5): 447-454.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.201     OR     https://www.jcscp.org/EN/Y2018/V38/I5/447

Fig.1  Variations of microhardness and impact energy of Q690 high strength steel with Tp
Fig.2  OM microstructures of Q690 high strength steel before (a) and after thermal treatments at 1350 ℃ (b), 950 ℃ (c), 850 ℃ (d), 650 ℃ (e) and 500 ℃ (f) peak temperatures
Fig.3  SEM microstructures of Q690 high strength steel before (a) and after thermal treaments at 1350 ℃ (b), 950 ℃ (c), 850 ℃ (d), 650 ℃ (e) and 500 ℃ (f) peak temperatures
Fig.4  OCP-time curves of Q690 high strength steel before and after thermal treatments at different peak temperatures in 3.5%NaCl solution
Fig.5  EIS curves of Q690 high strength steel after thermal treatments at different peak temperatures in 3.5%NaCl solution
Fig.6  EIS equivalent circuit of Q690 steel samples
Peak temperature℃ RsΩcm2 CPESsecn n RctΩcm2 Chi-squared
1350 99.46 2.355×10-4 0.81 6037 2.31×10-2
950 93.81 4.796×10-4 0.75 2.09×104 1.6×10-3
850 101 5.217×10-4 0.83 7204 7×10-4
650 122.5 6.308×10-4 0.66 7579 1.5×10-3
500 34.64 3.677×10-4 0.82 1.61×106 1.8×10-3
Table 1  Fitting values of various impedance parameters of EIS of Q690 steel samples
Fig.7  Potentiodynamic polarization curves of Q690 high strength steel thermally treated at different peak temperatures in 3.5%NaCl solution
Peak temperature Ecorr(vs SCE)mV IcorrμAcm-2 RpΩcm2
As-prepared -0.591 168.6 154.7
1350 ℃ -0.580 4.05 6439.1
950 ℃ -0.499 3.79 6869.3
850 ℃ -0.577 129.19 201.9
650 ℃ -0.448 4.13 6313.0
500 ℃ -0.509 3.29 7918.2
Table 2  Fitting results of potentiodynamic polarization curves of Q690 high strength steel samples
Fig.8  Corrosive morphologies of Q690 high strength steel samples thermally treated at three typical peak temperatures of 1350 ℃ (a, d), 850 ℃ (b, e) and 500 ℃ (c, f) after electrochemical tests
[1] Ma T Y, Hu Y F, Liu X, et al.Experimental investigation into high strength Q690 steel welded H-sections under combined compression and bending[J]. J. Cons. Steel Res., 2017, 138: 449
[2] Xu W H, Dong C L, Yang C L, et al.Microstructure and mechanical properties of high-strength steel joints by oscillating arc narrow gap GMAW[J]. Weld. Join., 2016, 7: 32(徐望辉, 董春林, 杨春利等. 高强钢摆动电弧窄间隙GMAW组织与性能研究[J]. 焊接, 2016, 7: 32)
[3] Wang A H, Peng Y, Xiao H J, et al.Impact fracture behavior of deposited metal of 690 MPa level high strength low alloy steel[J]. J. Mech. Eng., 2012, 48(2): 73(王爱华, 彭云, 肖红军等. 690MPa级低合金高强钢熔敷金属冲击断裂行为研究[J]. 机械工程学报, 2012, 48(2): 73)
[4] Chen X Z, Huang Y M.Hot deformation behavior of HSLA steel Q690 and phase transformation during compression[J]. J. Alloys Compd., 2015, 619: 564
[5] Li Y J, Jiang Q L, Bao Y P, et al.Effect of heat input on the microstructure and toughness of heat affect zone of Q690 high strength steel[J]. China Sci., 2011, 6: 98(李亚江, 蒋庆磊, 暴一品等. 焊接热输入对Q690高强钢热影响区组织和韧性的影响[J]. 中国科技论文, 2011, 6: 98)
[6] Meng Y, Luo P, Hu C, et al.Influence of peak temperature on microstructure and toughness of heat affected zone of Q690 steel[J]. Hot Work. Technol., 2013, 42(17): 43(孟尧, 罗鹏, 胡聪等. 热循环峰值温度对Q690钢热影响区组织与韧性的影响[J]. 热加工工艺, 2013, 42(17): 43)
[7] Ma H C, Liu Z Y, Du C W, et al.Effect of SO2 content on corrosion behavior of high-strength steel E690 in polluted marine atmosphere[J]. J. Mech. Eng., 2016, 52(16): 33(马宏驰, 刘智勇, 杜翠薇等. SO2质量分数对污染海洋大气环境中高强钢E690腐蚀行为的影响[J]. 机械工程学报, 2016, 52(16): 33)
[8] Xing P, Lu L, Li X G.Oxygen-concentration cell induced corrosion of E690 steel for ocean platform[J]. Chin. J. Mater. Res., 2016, 30: 241(邢佩, 卢琳, 李晓刚. 海洋用高强钢E690氧浓差腐蚀行为研究[J]. 材料研究学报, 2016, 30: 241)
[9] Ma H C, Liu Z Y, Du C W, et al.Effect of cathodic potentials on the SCC behavior of E690 steel in simulated seawater[J]. Mater. Sci. Eng., 2015, A642: 22
[10] Hao W K, Liu Z Y, Wu W, et al.Electrochemical characterization and stress corrosion cracking of E690 high strength steel in wet-dry cyclic marine environments[J]. Mater. Sci. Eng., 2018, A710: 318
[11] Wu W, Hao W K, Liu Z Y, et al.Corrosion behavior of E690 high-strength steel in alternating wet-dry marine environment with different pH values[J]. J. Mater. Eng. Perform., 2015, 24: 4636
[12] Zhang J, Cai Q W, Wu H B, et al.Mechanical properties and marine atmosphere corrosion behavior of E690 ocean platform steel[J]. J. Univ. Sci. Technol. Beijing, 2012, 34: 657(张杰, 蔡庆伍, 武会宾等. E690海洋平台用钢力学性能和海洋大气腐蚀行为[J]. 北京科技大学学报, 2012, 34: 657)
[13] Wu B, Cai Q W, Zhang J, et al.Corrosion resistance of E690 platform steel in simulation marine atmosphere[J]. Heat Treat. Met., 2011, 36(3): 26(武博, 蔡庆伍, 张杰等. E690平台用钢耐海洋大气腐蚀模拟[J]. 金属热处理, 2011, 36(3): 26)
[14] Yi Y Y, Zheng S D, Yi J L, et al.Narrow gap gas metal arc welding of S960QL steel[J]. Electr. Weld. Mach., 2012, 42(4): 76(易耀勇, 郑世达, 易江龙等. S960QL钢窄间隙熔化极气体保护焊[J]. 电焊机, 2012, 42(4): 76)
[15] Wang L W, Liu Z Y, Cui Z Y, et al.In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel[J]. Corros. Sci., 2014, 85: 401
[16] Yin J, Liu T W, Liu W Q.Ultra-fine mc-type precipitates formed during high tempering in a high-strength low-alloy bainitic steel[J]. Heat Treat., 2016, 31(4): 9(殷匠, 刘天威, 刘文庆. 一种高强度低合金贝氏体钢高温回火析出的极细MC相[J]. 热处理, 2016, 31(4): 9)
[17] Xu C C, Zhang X S, Hu G.Effect of plastic deformation on texture and corrosion resistance of AISI304 stainless steel[J]. J. Chem. Ind. Eng., 2003, 54: 790(许淳淳, 张新生, 胡钢. 塑性变形对AISI304不锈钢组织及耐蚀性的影响[J]. 化工学报, 2003, 54: 790)
[18] Ma H C, Du C W, Liu Z Y, et al.Comparison research on corrosion behavior of E36 and E690 steel in simulated seawater[J]. Corros. Sci. Prot. Technol., 2016, 28: 27(马宏驰, 杜翠薇, 刘智勇等. E36和E690钢在模拟海水中的腐蚀行为对比研究[J]. 腐蚀科学与防护技术, 2016, 28: 27)
[19] Yue Y J, Tang D, Wu H B, et al.Influence of Nb on corrosion behavior of low alloy steel in strong-acid Cl- solution environment[J]. J. Mater. Eng., 2015, 43(6): 14(岳远杰, 唐荻, 武会宾等. Nb对高含Cl-强酸性溶液环境中低合金钢腐蚀性能的影响[J]. 材料工程, 2015, 43(6): 14)
[20] Li H,Yang C F. Chai F, et al.Effect of gas composition on the corrosion behavior of low alloy steel in wet-dry cycling environment[J]. J. Iron Steel Res., 2016, 28: 50(李灏, 杨才福, 柴锋等. 干湿交替环境下气体组成对低合金钢腐蚀行为的影响[J]. 钢铁研究学报, 2016, 28: 50)
[1] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[2] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[3] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[4] JIANG Dongxue,FU Ying,ZHANG Junwei,ZHANG Wei,XIN Li,ZHU Shenglong,WANG Fuhui. Preparation and Properties of Alumina Ceramic Film on Ti-alloy Surface[J]. 中国腐蚀与防护学报, 2019, 39(6): 469-476.
[5] YUAN Wei,HUANG Feng,GAN Lijun,GE Fangyu,LIU Jing. Effect of Microstructure on Hydrogen Induced Cracking and Hydrogen Trapping Behavior of X100 Pipeline Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 536-542.
[6] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[7] WEI Xinxin,ZHANG Bo,MA Xiuliang. TEM Investigation to Oxide Scale Formed on Single Crystal Alloy FeCr15Ni15 at High Temperature[J]. 中国腐蚀与防护学报, 2019, 39(5): 417-422.
[8] YU Mei,WEI Xindi,FAN Shiyang,LIU Jianhua,LI Songmei,ZHONG Jinyan. Corrosion Behavior of 2297 Al-Li Alloy under Tensile Load[J]. 中国腐蚀与防护学报, 2019, 39(5): 439-445.
[9] FU Anqing,ZHAO Mifeng,LI Chengzheng,BAI Yan,ZHU Wenjun,MA Lei,XIONG Maoxian,XIE Junfeng,LEI Xiaowei,LV Naixin. Effect of Laser Surface Melting on Microstructure and Performance of Super 13Cr Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[10] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[11] Yuan SHI,Zhuji JIN,Guannan JIANG,Zuotao LIU,Zhongzheng ZHOU,Zebei WANG. Electrochemical Corrosion of YG15 Cemented Carbide[J]. 中国腐蚀与防护学报, 2019, 39(3): 253-259.
[12] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[13] Yue LI, Jian WANG, Yong ZHANG, Jingang BAI, Yadi HU, Yongfeng QIAO, Caili ZHANG, Peide HAN. Analysis of Initial Oxidation Process of 2205 Duplex Stainless Steel in Closed Container at High Temperature[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[14] Guangrui JIANG, Guanghui LIU. Microstructure and Corrosion Resistance of Solidified Zn-Al-Mg Alloys[J]. 中国腐蚀与防护学报, 2018, 38(2): 191-196.
[15] Zhenguo NIU, Pushan GUO, Hong YE, Lijing YANG, Cheng XU, Zhenlun SONG. Microstructure Evolution and Corrosion Behavior of Degradable Zn-7Mg Alloy After Heat Treatment[J]. 中国腐蚀与防护学报, 2017, 37(4): 347-353.
No Suggested Reading articles found!