Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (5): 455-462    DOI: 10.11902/1005.4537.2017.175
Current Issue | Archive | Adv Search |
Corrosion Behavior of 304L Steel in Nitric Acid Environment
Xiaoyan ZHAO, Xiwu LIU, Xin'an CUI(), Fengchang YU
Luoyang R&D Center of Technology Sinopec Engineering (Group) CO., LTD., Luoyang 471003, China
Download:  HTML  PDF(5121KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Corrosion behavior of 304L stainless steel was investigated in the liquid and steam of 2%~20% (mass fraction) nitric acids at 80~135 ℃ by coupon immersion test. The surface morphology of specimens after corrosion test and the depth of intergranular corrosion were examined by SEM and metallographic microscope, respectively. Results showed that the corrosion rate of 304L stainless steel first increased slowly and then increased sharply with the increase of temperature or nitric acid concentration. Correspondingly, the corrosion form of the steel converted from uniform corrosion to intergranular corrosion. The influence of temperature and nitric acid concentration on the corrosion of 304L stainless steel in nitric acid steam was higher than that in nitric acid solution, while the steel is more likely suffered form intergranular corrosion in nitric acid steam. The degree of intergranular corrosion in nitric acid steam was more serious than that in nitric acid solution. With the increase of corrosion, breaking and falling off of grains on the surface of 304L stainless steel occurred, resulting in thinning in thickness of the material.

Key words:  austenitic stainless steel      nitric acid      transpassive state      intergranular corrosion     
Received:  25 October 2017     
ZTFLH:  TG172.6+3  
Fund: Supported by Sinopec Scientific Research Project (315108)

Cite this article: 

Xiaoyan ZHAO, Xiwu LIU, Xin'an CUI, Fengchang YU. Corrosion Behavior of 304L Steel in Nitric Acid Environment. Journal of Chinese Society for Corrosion and protection, 2018, 38(5): 455-462.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.175     OR     https://www.jcscp.org/EN/Y2018/V38/I5/455

Fig.1  Corrosion rates of 304L stainless steel in 8% (a) and 20% (b) nitric acid environments at different temperatures
Fig.2  SEM images of 304L stainless steel after corrosion in the solution (a, c, e, g) and steam (b, d, f, h) of 8% nitricacid at 80 ℃ (a, b), 100 ℃ (c, d), 120 ℃ (e, f) and 135 ℃ (g, h)
Fig.3  SEM images of 304L stainless steel after corrosion in the solution (a, c, e, g) and steam (b, d, f, h) of 20% nitricacid at 80 ℃ (a, b), 100 ℃ (c, d), 120 ℃ (e, f) and 135 ℃ (g, h)
Fig.4  Section micrographs of 304L stainless steel after corrosion in the solution (a) and steam (b) of 20% nitric acid at 135 ℃
Fig.5  Variations of corrosion rate of 304L stainless steel with nitric acid concentratio in two different environments at 135 ℃
Fig.6  SEM images of 304L stainless steel after corrosion in the solution (a, c, e, g, i) and steam (b, d, f, h, j) of 2% (a, b), 4% (c, d), 8% (e, f) and 16% (g, h) nitric acid at 135 ℃
[1] Yau T L.Metallic materials for nitric acid service [A]. Corrosion 2002[C]. Denver, Colorado, 2002
[2] Laghoutaris P, Gruet N, Gwinner B, et al.Intergranular corrosion of stainless steel in nitric media [A]. Corrosion 2015[C]. Dallas, Texas, 2015
[3] Gullberg D.Corrosion assessment of stainless steels in nitric acid [A]. Corrosion 2015[C]. Dallas, Texas, 2015
[4] Mickalonis J I.Testing of 304L stainless steel in nitric acid environments with fluorides and chlorides [A]. Corrosion 2011[C]. Houston, Texas, 2011
[5] Khan S, Kain V.Measurement and Prediction of corrosion damage in stainless steels in nitric acid containing oxidizing ions [A]. Corrosion 2012[C]. Salt Lake City, Utah, 2012
[6] Zhang S L, Li M J, Wang X B, et al.Intergranular corrosion of 18-8 austenitic stainless steel[J]. J. Chin. Soc. Corros. Prot., 2007, 27: 124(张述林, 李敏娇, 王晓波等. 18-8奥氏体不锈钢的晶间腐蚀[J]. 中国腐蚀与防护学报, 2007, 27: 124)
[7] Xu Y H, Kong L Z, Lu W, et al.Electrochemical corrosion behavior of AISI type 304 stainless steel in nitric acid media[J]. Corros. Prot., 2015, 36: 905(徐一慧, 孔令真, 路伟等. 304不锈钢在硝酸环境中的腐蚀电化学行为[J]. 腐蚀与防护, 2015, 36: 905)
[8] Wang W, Luo M, Zhang Q F.Corrosion resistance of superpurity austenitic stainless steel in boiling nitric acid containing Cr6+[J]. J. Iron Steel Res., 2009, 21(1): 47(王玮, 罗明, 张启富. 沸腾稀硝酸中Cr6+对高纯不锈钢耐蚀性的影响[J]. 钢铁研究学报, 2009, 21(1): 47)
[9] Kolman D G, Ford D K, Butt D P, et al.Corrosion of 304 stainless steel exposed to nitric acid-chloride environments [A]. Corrosion97[C]. New Orleans, Louisiana, 1997
[10] Ohta J, Mayuzumi M, Kusanagi H, et al.Corrosion of high purity Fe-Cr-Ni alloys in 13N boiling nitric acid [A]. Corrosion 98[C]. San Diego, California, 1998
[11] Takeuchi M,Whillock G O H.Effect of NOxgases on corrosion of stainless stell in hot nitric acid solutions[J]. Br. Corros. J., 2002, 37: 199
[12] Kato C, Yano M, Kiuchi K, et al.Effects of heat-transfer on corrosion of zirconium in a boiling nitric acid solution[J]. Corros. Eng.,2003, 52: 53
[13] Balbaud F, Sanchez G, Santarini G, et al.Cathodic reactions involved in corrosion processes occurring in concentrated nitric acid at 100 ℃[J]. Eur. J. Inorg. Chem., 2000, 2000: 665
[14] Balbaud F, Sanchez G, Santarini G, et al.Equilibria between gas and liquid phases for concentrated aqueous solutions of nitric acid[J]. Eur. J. Inorg. Chem., 1999, 1999: 277
[15] Balbaud F, Sanchez G, Fauvet P, et al.Mechanism of corrosion of AISI 304L stainless steel in the presence of nitric acid condensates[J]. Corros. Sci., 2000, 42: 1685
[16] Wilding M W, Paige B E.Survey on Corrosion of Metals and Alloys in Solutions Containing Nitric Acid [R]. Idaho Falls: National Technical Information Service, 1976
[17] Schosger J P, Dabosi F, Demay R, et al.Influence of corrosion products on the passivation of AISI 304L stainless steel in nitric acid media [A]. Proceedings of Eurocorr 96 Conference[C]. Nice, France, 1996
[18] Gang Y M.Development and selection of nitric acid resistance steel[J]. Chem. Eng. Des., 2004, 14(3): 6(冈毅民. 硝酸用钢的发展及其选择[J]. 化工设计, 2004, 14(3): 6)
[19] People's Republic of China General Administration of Quality Supervision,Inspection and Quarantine. GB/T 10123-2001 Corrosion of metals and alloys--Basic terms and definitions [S]. Beijing: China Standard Press, 2004(中华人民共和国国家质量监督检验检疫总局. GB/T 10123-2001 金属和合金的腐蚀基本术语和定义[S].北京: 中国标准出版社, 2004)
[20] People's Republic of China General Administration of Quality Supervision,Inspection and Quarantine,China National Standardization Management Committee. GB/T 21433-2008 Detecting susceptibility to intergranular corrosion in stainless steel pressure vessels [S]. Beijing: China Standard Press, 2008(中华人民共和国国家质量监督检验检疫总局,中国国家标准化管理委员会. GB/T 21433-2008 不锈钢压力容器晶间腐蚀敏感性检验[S].北京: 中国标准出版社, 2008)
[1] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[2] Hui LIU,Wei QIU,Bin LENG,Guojun YU. Corrosion Behavior of 304 and 316H Stainless Steels in Molten LiF-NaF-KF[J]. 中国腐蚀与防护学报, 2019, 39(1): 51-58.
[3] Xiwu LIU,Xiaoyan ZHAO,Xin'an CUI,Lanfei XU,Xiaowei LI,Rongqi CHENG. Corrosion Behavior of 304L Stainless Steel in Nitric Acid-Sodium Nitrate Solutions[J]. 中国腐蚀与防护学报, 2018, 38(6): 543-550.
[4] Danyang LIU, Jiexia WANG, Jinfeng LI, Yonglai CHEN, Xuhu ZHANG, Xiuzhi XU, Ziqiao ZHENG. Intergranular Corrosion Behavior of T6 Aging Treated Micro-alloyed Al-Cu-Li Alloys with Mg/Ag/Zn[J]. 中国腐蚀与防护学报, 2018, 38(2): 183-190.
[5] Chao SUN, Xiao YANG, Yuhua WEN. Effect of High-Al Austenitic Stainless Alloy Coatings Prepared by Magnetron Sputtering on High Temperature Oxidation Resistance of 316 Stainless Steel[J]. 中国腐蚀与防护学报, 2017, 37(6): 590-596.
[6] Deqiang LIU,Liming KE,Weiping XU,Li XING,Yuqing MAO. Intergranular Corrosion Behavior of Friction-stir Welding Joint for 20 mm Thick Plate of 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
[7] Xinyuan PENG,Xianliang ZHOU,Xiaozhen HUA. Effect of Grain Size on Susceptibility to Intergranular Corrosion of 316LN Stainless Steel[J]. 中国腐蚀与防护学报, 2016, 36(1): 25-30.
[8] XU Long, YAO Xi, LI Jingfeng, CAI Chao. Correlation Between Intergranular Corrosion Behavior and Aging Treatment of 2099 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2014, 34(5): 419-425.
[9] YU Shurong,HE Yanni,LI Shuxin,WANG Lu. Effect of Grain Size on Susceptibility to Intergranular Corrosion for Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2013, 33(1): 70-74.
[10] YIN Kaiju, QIU Shaoyu, TANG Rui, HONG Xiaofeng, ZHANG Lefu, ZHANG Qiang. CORROSION BEHAVIOR OF SUPER-AUSTENITIC STAINLESS STEEL AL-6XN IN SUPERCRITICAL WATER[J]. 中国腐蚀与防护学报, 2012, 32(5): 375-380.
[11] FENG Wanli, ZHANG Lefu, MA Mingjuan. EFFECTS OF ROLLING ON THE SPECIAL GRAIN BOUNDARIES AND INTERGRANULAR CORROSION OF ALLOY 690[J]. 中国腐蚀与防护学报, 2012, 32(4): 296-299.
[12] JIANG Ke, CHEN Xuedong, YANG Tiecheng, ZHANG wei, LIANG Chunlei. HIGH TEMPERATURE NAPHTHENIC ACID CORROSION RESEARCH OF TYPICAL AUSTENITIC STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2012, 32(1): 59-63.
[13] SUN Tao, DENG Bo, XU Juliang, LI Jin, JIANG Yiming. INFLUENCE OF NIOBIUM AND NITROGEN ON THE RESISTANCE TO PITTING AND INTERGRANULAR CORROSION OF 304 AUSTENITIC STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2010, 30(6): 421-426.
[14] XU Shan,DU Nan,ZHAO Qing,YE Mingyang. MONITORING THE PITTING SUSCEPTIBILITY OF AUSTENITIC STAINLESS STEEL IN NaCl SOLUTION BY ELECTRONIC SPECKLE PATTERN INTERFEROMETRY[J]. 中国腐蚀与防护学报, 2010, 30(5): 403-409.
[15] LI Chaoxing; LI Jinfeng; BIRBILIS Nick; JIA Zhiqiang; ZHENG Ziqiao. SYNERGETIC EFFECT OF Mg2Si AND Si PARTICLES ON INTERGRANULAR CORROSION OF Al-Mg-Si ALLOYS THROUGH MULTI-ELECTRODE COUPLING SYSTEM[J]. 中国腐蚀与防护学报, 2010, 30(2): 107-113.
No Suggested Reading articles found!