Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (5): 424-430    DOI: 10.11902/1005.4537.2017.164
Current Issue | Archive | Adv Search |
Effect of Pre-strain on Hydrogen Embrittlement Susceptibility of DP600 Steel
Shuzhong KE, Jing LIU(), Feng HUANG, Zhen WANG, Yunjie BI
State key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Download:  HTML  PDF(6487KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of pre-strain on the hydrogen embrittlement (HE) susceptibility of DP600 steel was studied by means of slow strain-rate tensile (SSRT) test, electrochemical permeation technique and fractograph observation of fracture surface. The results indicate that the HE susceptibility of DP600 steel increases with the increasing pre-strain when the level of pre-strain is below 15%, and then tends to stable when the pre-strain exceeds 15%. The pre-strain increases dislocation density and the amount of effective hydrogen in the steel, but decreases the effective diffusivity (Deff) of hydrogen, so that the HE susceptibility increases. However, when the pre-strain increases to above 15%, the HE susceptibility gradually becomes stable due to the decrease of diffusion and aggregation of hydrogen, which resulted from the dislocation tangle.

Key words:  DP600 steel      pre-strain      SSRT      electrochemical permeation technique      HE susceptibility      diffusion of hydrogen     
Received:  11 October 2017     
ZTFLH:  TG171  
Fund: Supported by National Natural Science Foundation of China (51571154)

Cite this article: 

Shuzhong KE, Jing LIU, Feng HUANG, Zhen WANG, Yunjie BI. Effect of Pre-strain on Hydrogen Embrittlement Susceptibility of DP600 Steel. Journal of Chinese Society for Corrosion and protection, 2018, 38(5): 424-430.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.164     OR     https://www.jcscp.org/EN/Y2018/V38/I5/424

Fig.1  Geometry of specimen used in tensile test
Fig.2  Stress-strain curve of tested DP600 steel in air
Fig.3  Geometry of specimen used in hydrogen permeation test
Fig.4  Stress-strain curves of DP600 steel samples with different pre-strains during tensile tests in air (a) and H2SO4 solution (b)
Fig.5  Enlongation and HEI(δL) (a), reduction of area and HEI(φL) (b) and ultimate tensile strength (c) of DP600 steel samples with different pre-strains in air and H2SO4 solution
Fig.6  Hydrogen permeation curves of DP600 steel samples with different pre-strains
Pre-strain Thickness / mm JL / 10-12 molcm-1s-1 Deff / 10-7 cm2s-1 C0 / 10-5 molcm-3
0% 1.70 9.319 5.91 1.577
10% 1.66 8.756 4.65 1.883
20% 1.52 7.466 2.23 3.348
Table 1  Hydrogen permeation parameters of DP600 steel samples with different pre-strains
Fig.7  Microstructures and dislocation patterns of DP600 steel samples with the pre-strains of 0% (a, d), 10% (b, e) and 20% (c, f)
Fig.8  Fracture images of DP600 steel samples with 0% (a), 10% (b) and 20% (c) pre-strains after tensile tests in air
Fig.9  Images of the edge (a~c) and center (d~f) of fracture of DP600 steel samples with 0% (a, d), 10% (b, e) and 20% (c, f) pre-strains after tensile tests in acid solution
Fig.10  Schematic diagrams of the distribution of dislocations and hydrogen atoms in DP600 steel samples with 0% (a), 10% (b) and 20% (c) pre-strains after tensile tests in acid solution
[1] Calcagnotto M, Ponge D, Raabe D.On the effect of manganese on grain size stability and hardenability in ultrafine-grained ferrite/martensite dual-phase steels[J]. Metall. Mater. Trans., 2012, 43A: 37
[2] Senuma T.Physical metallurgy of modern high strength steel sheets[J]. ISIJ Int., 2001, 41: 520
[3] Loidl M, Kolk O, Veith S, et al.Characterization of hydrogen embrittlement in automotive advanced high strength steels[J]. Materialwiss. Werkstofftech., 2011, 42: 1105
[4] Hui W J, Li Y, Zhang Y J, et al.Effect of prestraining on hydrogen absorption and delayed fracture behavior of a medium-carbon TRIP steel[J]. Trans. Mater. Heat Treat., 2012, 33(6): 42惠卫军, 李阳, 张永健等. 预应变对中碳TRIP钢氢吸附及延迟断裂行为的影响[J]. 材料热处理学报, 2012, 33(6): 42)
[5] Chen J, Li C J, Zhang S H.Hydrogen embrittlement of cold drawn ferrite + matensite dual-phase steel[J]. J. Beijing Univ. Sci. Technol. Beijing, 1990, 12: 339陈俊, 李承基, 章守华. 冷拔变形(F+M)型双相钢的氢脆[J]. 北京科技大学学报, 1990, 12: 339)
[6] Takasugi T, Hanada S.The effect of pre-deformation on moisture-induced embrittlement of Ni3Al alloys[J]. Intermetallics, 1997, 5: 127
[7] Li X F, Zhang J, Wang Y F, et al.Effect of cathodic hydrogen-charging current density on mechanical properties of prestrained high strength steels[J]. Mater. Sci. Eng., 2015, A641: 45
[8] Laureys A, Van den Eeckhout E, Petrov R, et al. Effect of deformation and charging conditions on crack and blister formation during electrochemical hydrogen charging[J]. Acta Mater., 2017, 127: 192
[9] Liu Q, Atrens A.Reversible hydrogen trapping in a 3.5NiCrMoV medium strength steel[J]. Corros. Sci., 2015, 96: 112
[10] Deng L.The evolution of multi-phase structure of 500 MPa high strength Seismic reinforcement in tensile deformation [D]. Kunming: Kunming University of Science and Technology, 2013邓蕾. 500 MPa高强度抗震钢筋多相组织在拉伸变形过程中的演变规律 [D]. 昆明: 昆明理工大学, 2013)
[11] Li X F, Wang Y F, Zhang P, et al.Effect of pre-strain on hydrogen embrittlement of high strength steels[J]. Mater. Sci. Eng., 2014, A616: 116
[12] McMahon C J Jr. Hydrogen-induced intergranular fracture of steels[J]. Eng. Fract. Mech., 2001, 68: 773
[13] Yin H, Li Q, Li J X, et al.Study on hydrogen embrittlement for pre-charged Maraging Steel[J]. Surf. Technol., 2016, 45(7): 22尹航, 李倩, 李金许等. 预充氢马氏体时效钢的氢脆性能研究[J]. 表面技术, 2016, 45(7): 22)
[14] Olden V, Thaulow C, Johnsen R.Modelling of hydrogen diffusion and hydrogen induced cracking in supermartensitic and duplex stainless steels[J]. Mater. Des., 2008, 29: 1934
[15] Guo W, Zhao W M, Zhang T M, et al.Hydrogen permeation behavior of X80 steel under cathodic polarization and stress[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 353郭望, 赵卫民, 张体明等. 阴极极化和应力耦合作用下X80钢氢渗透行为研究[J]. 中国腐蚀与防护学报, 2015, 35: 353)
[16] Kim S J, Jung H G, Kim K Y.Effect of tensile stress in elastic and plastic range on hydrogen permeation of high-strength steel in sour environment[J]. Electrochim. Acta, 2012, 78: 139
[17] Young G A Jr, Scully J R. The diffusion and trapping of hydrogen in high purity aluminum[J]. Acta Mater., 1998, 46: 6337
[18] Escobar D P, Depover T, Duprez L, et al.Combined thermal desorption spectroscopy, differential scanning calorimetry, scanning electron microscopy and X-ray diffraction study of hydrogen trapping in cold deformed TRIP steel[J]. Acta Mater., 2012, 60: 2593
[19] Choo W Y, Lee J Y.Effect of cold working on the hydrogen trapping phenomena in pure iron[J]. Metall. Trans., 1983, 14A: 1299
[20] Gerberich W W, Chen Y T.Hydrogen-controlled cracking-An approach to threshold stress intensity[J]. Metall. Trans., 1975, 6A: 271
[21] Ronevich J A,De Cooman B C,Speer J G, et al. Hydrogen effects in prestrained transformation induced plasticity steel[J]. Metall. Mater. Trans., 2012, 43A: 2293
[22] Wang Y B, Wang S, Yan L W, et al.The effects of plastic deformation on hydrogen induced cracking[J]. J. Chin. Soc. Corros. Prot., 2000, 20: 248王燕斌, 王胜, 颜练武等. 塑性变形在氢致断裂中的作用[J]. 中国腐蚀与防护学报, 2000, 20: 248)
[1] ;. STRESS CORROSION OF 304 STAINLESS STEEL IN H2S SOLUTION[J]. 中国腐蚀与防护学报, 2007, 27(2): 101-108 .
[2] Jian Xv; Manying Zhong; Shixing Guo. CHARACTERISTICS OF HYDROGEN DAMAGES FORHYDROGENATION REACTOR WALL-MATERIALS[J]. 中国腐蚀与防护学报, 2003, 23(3): 149-155 .
No Suggested Reading articles found!