Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (5): 487-494    DOI: 10.11902/1005.4537.2017.155
Current Issue | Archive | Adv Search |
Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures
Yue QIAO, Zhiping ZHU(), Lei YANG, Zhifeng LIU
Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha 410004, China
Download:  HTML  PDF(1671KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Oxidation reduction potential (ORP) measurement can be an effective means for maintaining the state of feedwater for power station to be oxidizing, neutral, or reducing. In order to investigate the characteristics of ORP and its correlation with metal corrosion in high temperature water, a series of experiments including electrochemical measurement and simulated corrosion experiment were carried out. The results show that the ORP increases with the increase of dissolved oxygen content, while decreases with the increase of pH and temperature. Besides the flow rate has no effect on the ORP. It follows that ORP measurements for high-temperature and -pressure waters, as compared to the ones for low-temperature ORP waters, can act as a more sensitive and accurate method to effectively detect the trace amount of dissolved oxygen. In summary, ORP measurements can be used to understand, monitor and control the corrosion of steels in feedwater.

Key words:  oxidation reduction potential      dissolved oxygen content      pH value      20# carbon steel      high-temperature feedwater environment     
Received:  27 September 2017     
ZTFLH:  TG172.4  
Fund: Supported by Key Project of Hunan Science and Technology Plan (2013GK2016) and Hunan Postgraduate Research and Innovation Project (CX2017B488)

Cite this article: 

Yue QIAO, Zhiping ZHU, Lei YANG, Zhifeng LIU. Monitoring and Simulated Experiments of Oxidation-Reduction Potential of Boiler Feedwater at High Temperatures. Journal of Chinese Society for Corrosion and protection, 2018, 38(5): 487-494.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.155     OR     https://www.jcscp.org/EN/Y2018/V38/I5/487

Fig.1  Dynamic simulating apparatus for ORP measurementat high temperature
Fig.2  Effect of oxygen concentration on ORP at various temperatures
Fig.3  Relationships of ORP and lgDO at various temperatures
Temperature℃ Fitting equation (x : lgDO/μgL-1, z : ORP/mV) R 2
80 z =71.72x+114.48 0.9928
100 z =76.45x+89.60 0.9922
120 z =89.62x+38.53 0.9904
Table 1  Fitting equations of ORP-lgDO at various temperatures
Fig.4  Variations of ORP with dissolved oxygen concentration at various temperatures
Fig.5  Effect of pH on ORP at 25 ℃ in water containing various oxygen concentrations
Fig.6  Effect of pH on ORP at high temperatures
Temperature℃ Fitting equation (y : pH, z : ORP/mV) R 2
80 z =797.46-68.20y 0.9954
100 z =803.17-70.88y 0.9917
120 z =789.91-73.52y 0.9966
Table 2  Fitting equations of ORP-pH at various temperatures
Fig.7  Variations of ORP with flow of water containing various oxygen concentrations at 80 ℃
Fig.8  ORP as a function of temperature in water containing 10 μgL-1 oxygen (DO=10 μg/L, pH=9.0)
Fig.9  ORP as a function of dissolved oxygen and pH at various temperatures
Temperature ℃ Fitting equation (x : lgDO/μgL-1; y: pH; z : ORP/mV)
80 z =71.72x-68.20y+728.2
100 z=76.45x-70.88y+720.5
120 z =89.62x-73.52y+700.2
Table 3  Fitting equations of ORP-DO -pH at various temperatures
Number DO pH Calculated value Measured value Test statisticsa
1 10 8 254.3 261.6 Z=-0.357b
2 10 9 186.1 192.3
3 30 8 288.5 295.4 Asymp. Sig. (2-tailed)=0.721
4 30 9 220.3 224.7
5 100 8 326.0 329.1
6 100 9 257.8 249.9
7 200 8 347.6 340.3
8 200 9 279.4 276.7
9 300 8 360.3 353.4
10 300 9 292.1 285.7
Table 4  Wilcoxon test results of the calculated and measured values of ORP at 80 ℃
Number DO pH Calculated value Measured value Test statisticsa
1 10 8 201.7 210.4 Z=-0.765b
2 10 9 128.1 135.2
3 30 8 244.4 239.6 Asymp. Sig. (2-tailed)=0.444
4 30 9 170.9 167.6
5 100 8 291.3 288.2
6 100 9 217.8 213.2
7 200 8 318.3 323.4
8 200 9 244.7 235.6
9 300 8 334.0 342.7
10 300 9 201.7 210.4
Table 5  Wilocoxon test results of the calculated and measured values of ORP at 120 ℃
Fig.10  Potential-pH diagram of Fe-H2O system at 80 ℃
Fig.11  Potential-pH diagram of Cu-H2O system at 80 ℃
Fig.12  Relationship diagram of the corrosion potential of 20# steel and ORP at different corrosion time
[1] National Energy Administration.DL/T 1480-2015 Test method for oxidation-reduction potential of water [S]. Beijing: China Electric Power Press, 2015(国家能源局. DL/T 1480-2015 水的氧化还原电位测量方法[S].北京: 中国电力出版社, 2015)
[2] Macdonald D D.Viability of hydrogen water chemistry for protecting in-vessel components of boiling water reactors[J]. Corrosion, 1992, 48: 194
[3] Macdonald D D.Redox potential measurements in high temperature aqueous systems[J]. J. Electrochem. Soc., 1981, 128: 250
[4] Jones R L, Nelson J L.Hydrogen water chemistry for BWRs: A status report on the EPRI development program[J]. Nucl. Eng. Des., 1990, 124: 33
[5] Hicks P D, Grattan D A.Method and device for creating and analyzing an at temerature and pressure oxidation-reduction potential signature in hot water systems for preventing corrosion [P]. US Pat, US7955853, 2011
[6] Gray D M.The role of dissolved oxygen and ORP measurements in power plant chemistry[J]. Power Plant Chem., 2008, 10: 320
[7] Olson V G.Evaluating on-line high purity water oxidizing-reducing potential analysis for boiler feedwater quality[J]. Power Plant Chem., 2010, 12: 110
[8] Gray D M.Practical quality assurance of on-line analytical measurements[J]. Power Plant Chem., 2010, 12: 492
[9] Lendi M, Wuhrmann P.Impact of film-forming amines on the reliability of online analytical instruments[J]. Power Plant Chem., 2012, 14: 560
[10] Hicks P D, Grattan D A, White P M, et al.Feedwater redox stress management: a detailed @T ORP? study at a coal-fired electric utility[J]. Power Plant Chem., 2007, 9: 324
[11] Zheng L L, Dong J, Li H B, et al.Optimization of oxidation - reduction potential in water [A]. Annual Meeting of the Chinese Society for Environmental Science[C]. Haikou, 2016: 1045(郑琳琳, 董捷, 李海滨等. 水中氧化还原电位测定方法优化 [A]. 2016中国环境科学学会学术年会[C]. 海口, 2016: 1045)
[12] Kerner Z, Balog J, Nagy G.Testing of high temperature reference electrodes for light water reactor applications[J]. Corros. Sci., 2006, 48(8): 1899
[13] Xiang J, Xu L P, Li H P, et al.Research on and application of oxidation-reduction potential[J]. Earth Environ., 2014, 42: 430(向交, 徐丽萍, 李和平等. 氧化还原电位的研究及应用[J]. 地球与环境, 2014, 42: 430)
[14] Xu H C, Xu X J, Wang K, et al.An analysis of factors affecting the oxidation reduction potential in drinking water[J]. J. Univ. Sci. Technol. Suzhou (Eng. Technol.), 2007, 20(2): 63(徐华成, 徐晓军, 王凯等. 饮用水氧化还原电位的影响因素分析[J]. 苏州科技学院学报(工程技术版), 2007, 20(2): 63)
[15] Huang Q, Song J X, Wang S H, et al.Influencing factors of ORP measurement for reverse osmosis influent water in thermal power plants[J]. Ind. Water Treat., 2015, 35(6): 75(黄茜, 宋敬霞, 汪思华等. 火电厂反渗透进水ORP测量的影响因素[J]. 工业水处理, 2015, 35(6): 75)
[16] Hoare J P.On the interaction of oxygen with platinum[J]. Electrochim. Acta, 1982, 27: 1751
[17] Niedrach L W, Stoddard W H.Corrosion potentials and corrosion behavior of AISI 304 stainless steel in high-temperature water containing both dissolved hydrogen and oxygen[J]. Corrosion, 1986, 42: 696
[18] Jia J M, Chen J G, Li Z G, et al.Countermeasures against massive exfoliation of oxidation scale on the internal surface of coarse grained 18-8 type stainless steel boiler tubes[J]. Electr. Power, 2008, 41(5): 37(贾建民, 陈吉刚, 李志刚等. 18-8系列粗晶不锈钢锅炉管内壁氧化皮大面积剥落防治对策[J]. 中国电力, 2008, 41(5): 37)
[19] Lu J T, Gu Y F.High-temperature steam oxidation behavior of alloys used for key parts of the power plant boiler[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 19(鲁金涛, 谷月峰. 电站锅炉关键部件材料高温蒸汽氧化研究进展[J]. 中国腐蚀与防护学报, 2014, 34: 19)
[20] Liu C H, Shi G Z.Study on accurate control of feed-water oxygenated treatment for capital construction 1000 MW ultra-supercritical unit[J]. Technol. Water Treat., 2013, 39(6): 109(刘春红, 施国忠. 基建超超临界1000 MW机组精确给水加氧处理技术的研究[J]. 水处理技术, 2013, 39(6): 109)
[21] Chen T Y, Moccari A A, Macdonald D D.Development of controlled hydrodynamic techniques for corrosion testing[J]. Corrosion, 1992, 48: 239
[22] Macdonald D D, Lin C C.Discussion on "electrochemical potential measurements under simulated BWR water chemistry conditions"[J]. Corrosion, 1993, 49: 90
[23] Eason E D.Modeling ECP of stainless steel in simulated BWR environments with hydrogen peroxide addition [R]. Palo Alto, CA: Electric Power Research Institute, 1991
[24] Shu Y D, Yang X Y.Modern Electrochemical Research Methods [M]. Changsha: Central South University Press, 2015: 34(舒余德, 杨喜云著. 现代电化学研究方法 [M]. 长沙: 中南大学出版社, 2015: 34)
[25] Zhou B Q, Chen Z H.Water Treatment in the Thermal Power Plant [M]. 4th Ed.,Beijing: China Electric Power Press, 2009: 595(周柏青, 陈志和. 热力发电厂水处理 [M]. 第4版. 中国电力出版社, 2009: 595)
[1] Xin LI,Xu CHEN,Wuqi SONG,Jiaxing YANG,Ming WU. Effect of pH Value on Microbial Corrosion Behavior of X70 Steel in a Sea Mud Extract Simulated Solution[J]. 中国腐蚀与防护学报, 2018, 38(6): 565-572.
[2] Xiankang ZHONG,Junying HU. Corrosion Behavior of X65 Carbon Steel in CO2Containing Liquids with Constant pH and Ferrous Ion Concentration[J]. 中国腐蚀与防护学报, 2018, 38(6): 573-578.
[3] Shuan LIU,Kaihe ZHOU,Yunhui FANG,Xiaozhong XU,Jiong JIANG,Xiaoping GUO,Wenru ZHEN,Jibin PU,Liping WANG. Effect of Environmental Factors on Corrosion Behavior of Zn in Saturated Zn(OH)2 Solution I—Cl- Concentration and pH Values[J]. 中国腐蚀与防护学报, 2016, 36(6): 522-528.
[4] Kaihe ZHOU,Yunhui FANG,Xiaozhong XU,Jiong JIANG,Xiaoping GUO,Shuan LIU,Wenru ZHEN,Jibin PU,Liping WANG. Effect of Environmental Factors on Corrosion Behavior of Zn in Saturated Zn(OH)2 Solution II—Temperature and Dissolved Oxygen[J]. 中国腐蚀与防护学报, 2016, 36(6): 529-534.
[5] Tao HUANG,Xiaoping CHEN,Xiangdong WANG,Fengyi MI,Rui LIU,Xiangyang LI. Effect of pH Value on Corrosion Behavior of Q235 Steel in an Artificial Soil[J]. 中国腐蚀与防护学报, 2016, 36(1): 31-38.
[6] Yuna WANG, Kaibin NIE, Dong YANG, Juanyang YAO, Wantian DONG, Qiangqiang LIAO. Corrosion Inhibition of 2-Undecyl-N-Carboxymethyl-N- Hydroxyethyl Imidazoline on Carbon Steel in Simulated Seawater Reverse Osmosis Product Water[J]. 中国腐蚀与防护学报, 2015, 35(5): 407-414.
[7] CHANG Qinpeng, CHEN Youyuan, SONG Fang, PENG Tao. Corrosion Properties of B30 Cu-Ni Alloy and 316L Stainless Steel in a Heat Pump System[J]. 中国腐蚀与防护学报, 2014, 34(6): 544-549.
[8] XING Yunying, LIU Zhiyong, DU Cuiwei, LI Xiaogang, LIU Ranke, ZHU Min. Influence of H2S Concentration and pH Value on Corrosion Behavior of Weld Joint of X65 Subsea Pipeline Steel[J]. 中国腐蚀与防护学报, 2014, 34(3): 231-236.
[9] WU Zhibin, WEI Yinghua, LI Jing, SUN Chao. EFFECT OF SOLUTION STATE ON CATHODIC POLARIZATION BEHAVIOR OF Q345 STEEL BENEATH SIMULATED DISBONDED COATING[J]. 中国腐蚀与防护学报, 2012, 32(5): 369-374.
No Suggested Reading articles found!