Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (5): 495-501    DOI: 10.11902/1005.4537.2017.133
Current Issue | Archive | Adv Search |
Hot Corrosion of Pure Nickel and Its Weld Joints in Molten Na2SO4-K2SO4 Salts
Xijing WANG1(), Boshi WANG1, Chao YANG1, Yan YANG2, Bin SHEN3
1 State Key Laboratory of Gansu Advanced Nonferrous Metal Materials, Lanzhou University of Technology, Lanzhou 730050, China
2 State Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization, Jinchuan Group Cooperation Ltd., Jinchang 737104, China
3 Jinchuan Nickel Industrial Cooperation Ltd., Jinchang 737104, China
Download:  HTML  PDF(6429KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Hot corrosion behavior of pure nickel and its joints, which were prepared by plasma arc welding (PAW) and plasma arc welding+tungsten inert gas (PAW+TIG) respectively, in molten Na2SO4-K2SO4 salts at 900 ℃ are investigated by means of weight loss measurements, X-ray diffractometer (XRD), scanning electron microscopy (SEM), and energy dispersive X-ray spectroscopy (EDS). Experimental results show that the grain size and hot corrosion resistance of the welds obtained by the two welding methods have little difference, while the corrosion resistance of the joints is inferior to that of the base metal. The hot corrosion kinetics of the specimens follow linear power laws, and the corrosion products on the base metal and joints are mainly composed of NiO and Ni3S2. Cross-sectional morphologies and corresponding elemental maps indicate that corrosion product composed of an outer dense scale, beneath which there existed an internal zone of oxides and sulfides. According to these results, a mechanism of synergistic oxidation and sulfidation for hot corrosion of pure nickel is confirmed. That is, the distribution of internal oxides and sulfides, located beneath the outer oxide scale , extends to the substrate. In other words, the sulfidation-oxidation cycle process and sulfur play an important role in the process of hot corrosion. So,for pure nickel welding, PAW+TIG welding method meets the requirements of the actual industrial production and application.

Key words:  pure nickel      PAW+TIG welding      molten sulfate      hot corrosion mechanism      sulfidation-oxidation cycle     
Received:  07 August 2017     
ZTFLH:  TG174.4  
Fund: Supported by State Key Laboratory of Nickel and Cobalt Resources Comprehensive Utilization (301170501)

Cite this article: 

Xijing WANG, Boshi WANG, Chao YANG, Yan YANG, Bin SHEN. Hot Corrosion of Pure Nickel and Its Weld Joints in Molten Na2SO4-K2SO4 Salts. Journal of Chinese Society for Corrosion and protection, 2018, 38(5): 495-501.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.133     OR     https://www.jcscp.org/EN/Y2018/V38/I5/495

Fig.1  Schematic setup of PAW+TIG welding arrangement
Welding method PAW current
I / A
PAW voltage
U / V
TIG current
I / A
TIG voltage
U / V
Welding speed
v / mms-1
PAW 165 24 --- --- 3
PAW+TIG 160 24 195 13 6
Table 1  Welding parameters of PAW and PAW+TIG methods
Fig.2  Microstructures of Ni base metal (a), PAW weld (b) and PAW+TIG weld (c)
Fig.4  Surface images of base metal (a), PAW weld (b) and PAW+TIG weld (c) after corrosion in 75%Na2SO4-25%K2SO4 mixed salt at 900 ℃ for 72 h, and typical XRD pattern of corrosion products (d)
Fig.5  Cross-sectional morphologies of base metal (a), PAW weld (b) and PAW+TIG weld (c) after hot corrosion in 75%Na2SO4-25%K2SO4 mixed salt at 900 ℃ for 72 h
Fig.6  Cross-sectional morphologies and elemental maps of base metal (a), PAW weld (b) and PAW+TIG weld (c) after hot corrosion in 75%Na2SO4-25%K2SO4 mixed salt at 900 ℃ for 72 h
Fig.7  Schematic of the corrosion mechanism of the tested samples in 75%Na2SO4-25%K2SO4 mixed salt at 900 ℃ fordifferent time
[1] Komath M.Hot corrosion of nickel in anhydrous sodium hydroxide[J]. Mater. Chem. Phys., 1996, 45: 171
[2] Abd El-Haleem S M, Abd El-Wanees S. Chloride induced pitting corrosion of nickel in alkaline solutions and its inhibition by organic amines[J]. Mater. Chem. Phys., 2011, 128: 418
[3] Lv J L, Liang T X, Wang C.Effect of electrodeposition temperature on grain orientation and corrosion resistance of nanocrystalline pure nickel[J]. J. Solid State Chem., 2016, 240: 109
[4] Sequeira C A C, Cardoso D S P, Amaral L, et al. On the performance of commercially available corrosion-resistant nickel alloys: A review[J]. Corros. Rev., 2016, 34: 187
[5] Ramkumar K D, Abraham W S, Viyash V, et al.Investigations on the microstructure, tensile strength and high temperature corrosion behaviour of Inconel 625 and Inconel 718 dissimilar joints[J]. J. Manuf. Process., 2017, 25: 306
[6] Mortezaie A, Shamanian M.An assessment of microstructure, mechanical properties and corrosion resistance of dissimilar welds between Inconel 718 and 310S austenitic stainless steel[J]. Int. J. Pres. Ves. Pip., 2014, 116: 37
[7] Zhang J W, Wang W X, Huang Y P, et al.Electrochemical corrosion properties for weld metal of austenitic stainless steel[J]. Trans. China Weld. Inst., 2007, 28(2): 103(张俊旺, 王文先, 黄延平等. 奥氏体不锈钢焊缝金属的电化学腐蚀性能[J]. 焊接学报, 2007, 28(2): 103)
[8] Li Y S, Wang F G, Zhu Y, et al.Corrosion of pure Ni and two Ni-based alloys in presence of ZnCl2-KCl salt deposit[J]. Rare Met.Mater. Eng., 2001, 30: 376(李远士, 王富岗, 朱焱等. 纯Ni和Ni基合金在ZnCl2-KCl盐膜下的腐蚀[J]. 稀有金属材料与工程, 2001, 30: 376)
[9] Ma H T.High temperature corrosion of metallic materials induced by chloride salts [D]. Dalian: Dalian University of Technology, 2003(马海涛. 高温氯盐环境中金属材料的腐蚀 [D]. 大连: 大连理工大学, 2003)
[10] Wang X J, Wang B S, Zhang D.Hot corrosion behavior of pure nickel in 900 ℃ molten salt[J]. J. Lanzhou Univ. Technol., 2018, 44(2): 12(王希靖, 王博士, 张东. 纯镍在900 ℃熔盐中的热腐蚀行为[J]. 兰州理工大学学报, 2018, 44(2): 12)
[11] Zhu R Z, Zheng X G.A study of accelrated corrosion of nickel in molten salts at 705 ℃[J]. J. Chin. Soc. Corros. Prot., 1987, 7: 207(朱日彰, 郑晓光. 镍在705 ℃熔盐中加速腐蚀的研究[J]. 中国腐蚀与防护学报, 1987, 7: 207)
[12] Ning L K.Investigation on the hot corrosion resistance of four Ni-based superalloys [D]. Dalian: Dalian University of Technology, 2008(宁礼奎. 四种镍基高温合金的抗热腐蚀性能研究 [D]. 大连: 大连理工大学, 2008)
[13] Lei Z, Zhang M C, Dong J X.Hot corrosion behavior of powder metallurgy Rene95 nickel-based superalloy in molten NaCl-Na2SO4 salts[J]. Mater. Des., 2011, 32: 1981
[14] Li W J, Liu Y, Wang Y, et al.Hot corrosion behavior of Ni-16Cr-xAl based alloys in mixture of Na2SO4-NaCl at 600 ℃[J]. Trans. Nonferrous Met. Soc. China, 2011, 21: 2617
[15] Li T F.Alloy High Temperature Oxidation and Hot Corrosion [M]. Beijing: Chemical Industry Press, 2003: 17(李铁藩. 金属高温氧化和热腐蚀 [M]. 北京: 化学工业出版社, 2003, 17)
[16] Zhang Y S, Shi S T.An electrochemical model proposed for hot corrosion mechanisms[J]. Corros. Sci. Prot. Technol., 1993, 5(1): 23(张允书, 石声泰. 热腐蚀的电化学机理初探[J]. 腐蚀科学与防护技术, 1993, 5(1): 23)
[17] Lu X D, Tian S G, Chen T, et al.Internal oxidation and internal sulfuration of Ni-base alloy with high Cr content during hot corrosion in molten sulfate[J]. Rare Met. Mater. Eng., 2014, 43(1): 79(卢旭东, 田素贵, 陈涛等. 高铬镍基合金熔融硫酸盐热腐蚀过程中内氧化和内硫化行为的研究[J]. 稀有金属材料与工程, 2014, 43(1): 79)
[1] Xinqiang Wu; Qugui Zheng; Wei Ke. STUDY ON SURFACE COKING MORPHOLOGY OF PURE NICKEL AND ITS CORRELATIVE FACTORS[J]. 中国腐蚀与防护学报, 2001, 21(1): 10-18 .
[2] TANG Zhaolin WANG Fuhui WU Weitao(State Key Laboratory for Corrosion and Protection; Institute of Corrosion and Protection of Metals; Chinese Academy of Sciences; Shenyang 110015). HOT CORROSION BEHAVIOR OF TiAl INTERMETALLICS IN MOLTEN SALTS[J]. 中国腐蚀与防护学报, 1997, 17(3): 233-237.
No Suggested Reading articles found!