Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (2): 167-173    DOI: 10.11902/1005.4537.2017.101
Current Issue | Archive | Adv Search |
Cracking Behavior of Cold-welding Layer on A350 LF2 Steel in H2S Environment
Qiang GUO(), Changfeng CHEN, Shihan LI, Haobo YU, Helin LI
Department of Materials Science and Engineering, China University of Petroleum-Beijing, Beijing 102249, China
Download:  HTML  PDF(6704KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The microstructures of the cold-weld layers on A350 LF2 steel prepared with different process parameters was characterized and then their sulfide stress cracking (SSC)- and hydrogen induced cracking (HIC)-behavior was assessed corresponding to NACE standard experimental conditions. Results show that the welding process with low heat input, short duration and high duty cycle can lead to incomplete fusion, while high influx of Ar is easy to generate bubbles. The cold-weld layer is not sensitive to SSC, however it is easy to produce HIC cracks at welding defects. The cracks initiate in the non-fusion zone and the edge of weld bubbles, and then propagate along welding line. Appropriate parameters can eliminate welding defects, thereby, the prepared cold weld layer may possess good resistance to HIC.

Key words:  cold-welding repairing      incomplete fusion      welding bubble      sulfide stress cracking (SSC)      hydrogen induced cracking (HIC)     
Received:  29 June 2017     
Fund: Supported by National Natural Science Foundation of China (51134011 and 51301200)

Cite this article: 

Qiang GUO, Changfeng CHEN, Shihan LI, Haobo YU, Helin LI. Cracking Behavior of Cold-welding Layer on A350 LF2 Steel in H2S Environment. Journal of Chinese Society for Corrosion and protection, 2018, 38(2): 167-173.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.101     OR     https://www.jcscp.org/EN/Y2018/V38/I2/167

Fig.1  Schematic diagram of cold welding repaired specimen
Item Welding current / A Duration / s Duty ratio / % Ar flow / Lmin-1
1 140 0.03 20 4.5
2 140 0.05 30 5.0
3 140 0.07 40 5.5
4 140 0.09 50 6.0
5 160 0.03 30 5.5
6 160 0.05 20 6.0
7 160 0.05 20 5.0
8 160 0.07 50 4.5
9 160 0.09 40 5.0
10 180 0.03 40 6.0
11 180 0.05 50 5.5
12 180 0.07 20 5.0
13 180 0.07 30 5.0
14 180 0.09 30 4.5
15 200 0.03 50 5.0
16 200 0.05 40 4.5
17 200 0.07 30 5.5
18 200 0.09 20 6.0
Table 1  Optimization of welding parameters
Fig.2  Metallographic structure of base metal A350 LF2
Fig.3  Poor fusion zone (a) and pores (b) in the weld
Fig.4  Macro morphology of the weld (a), microstructures of HAZs close to the weld (b) and base metal (c), and microstructure of the weld (d)
Fig.5  Morphologies of the welds before (a) and after (b) removal of corrosion products
Fig.6  HIC cracks caused by incomplete fusion in the cold welding repaired weld: macro morphology (a),micro morphology (b), EDS analysis of incomplete fusion zone (c), crack tip morphology (d)
Fig.7  Fracture surface morphology of HIC crack
Fig.8  HIC occurrence due to the existence of pores in the weld: (a) the interior, (b) near the fusion line
[1] Xian N, Jiang F, Shi D Y, at el. Sulfide stress corrosion behavior of carbon steel coiled tubing under H2S environment[J]. Corros. Prot., 2012, S1: 142(鲜宁, 姜放, 施岱艳等. H2S环境下碳钢连续油管的SSC行为研究[J]. 腐蚀与防护, 2012, S1: 142)
[2] Liu R, Li J, Liu Z, et al.Effect of pH and H2S concentration on sulfide stress corrosion cracking (SSCC) of API 2205 duplex stainless steel[J]. Int. J. Mater. Res., 2015, 106(6): 608
[3] Liu Z Y, Wang X Z, Liu R K, et al.Electrochemical and sulfide stress corrosion cracking behaviors of tubing steels in a H2S/CO2, annular environment[J]. J. Mater. Eng. Perform., 2014, 23(4):1279
[4] Hao W K, Liu Z Y, Du C W, et al.Stress corrosion cracking behavior of 35CrMo steel in acid hydrogen sulfide solutions[J]. Chin. J. Mech. Eng., 2014, 50(4): 39(郝文魁, 刘智勇, 杜翠薇等. 35CrMo钢在酸性H2S环境中的应力腐蚀行为与机理[J]. 机械工程学报, 2014, 50(4): 39)
[5] Cai X W, Ge L, Chen C F, et al.Corrosion behavior of P110 tube and casing steel in the environment of sulfur deposition[J]. J. Chin. Soc. Corros. Prot., 2010, 30: 161(蔡晓文, 戈磊, 陈长风等. 油套管用P110钢在元素硫环境中腐蚀规律的研究[J]. 中国腐蚀与防护学报, 2010, 30: 161)
[6] Wan H, Liu Z, Du C, et al.Stress corrosion behavior of X65 steel welded joint in marine environment[J]. Int. J. Electrochem. Sci., 2015, 10(10): 8437
[7] Zeng T, Yu C Y.Discussion on sulphide stress corrosion cracking[J]. Total Corros. Control, 2011, 25(4): 9(曾彤, 余存烨. 硫化物应力腐蚀破裂探讨[J]. 全面腐蚀控制, 2011, 25(4): 9)
[8] Zhang Q, Meng L D, Yang J W, et al.High energy pulse precision cold-welding technology for repairing local surface default of metal parts[J]. China Surf. Eng., 2011, 24(1): 79(张庆, 孟令东, 杨军伟等. 高能脉冲精密冷补技术用于修复零件表面局部缺损[J]. 中国表面工程, 2011, 24(1): 79)
[9] Lu Y H, Huang D.Engine remanufacturing technology and industrial development[J]. Equip. Manuf. Technol., 2010, 12: 99(陆宇衡, 黄德. 发动机再制造技术及产业发展[J]. 装备制造技术, 2010, 12: 99)
[10] Matsunawa A, Seto N, Kim J D, et al.Observation of keyhole and molten pool behaviour in high power laser welding: Mechanism of porosity formation and its suppression method[J]. Trans. JWRI, 2001, 30(1): 13
[11] Seto N, Katayama S, Matsunawa A.Formation mechanism of porosity in high power YAG laser welding [A]. Proceedings of ICALEO 2000[C]. Dearborn, 2000
[12] Matsunawa A, Seto N, Kim J D, et al.Dynamics of keyhole and molten pool in high-power CO2 laser welding [A]. Advanced High-Power Lasers and Applications[C]. Osaka, 1999
[13] Hirth J P. Effects of hydrogen on the properties of iron and steel[J]. Metall. Mater. Trans., 1980, 11(6A):861
[14] Wang Z H, Wang Y Q.The effect of martensite layer at weld bond on the fracture toughness of 9%Ni steel joints welded by austenitic electrodes[J]. J. Beijing Univ. Technol., 1992, 18(3): 49(王智慧, 王月琴. 用奥氏体焊条焊接9%Ni钢马氏体层组织及接头的断裂韧性[J]. 北京工业大学学报, 1992, 18(3): 49)
[15] Luu W C, Wu J K.Effects of sulfide inclusion on hydrogen transport in steels[J]. Mater. Lett., 1995, 24(1): 175
[1] Cheng Yufeng;Du Yuanlong(Corrosion Science Laboratory;Institute of Corrosion and Protection of Metals;Chinese Academy of Sciences). FRACTURE MECHANISM OF MILD STEEL IN HYDROCHLORIC ACID CONTAINING Fe~(3+)[J]. 中国腐蚀与防护学报, 1995, 15(2): 81-86.
No Suggested Reading articles found!