Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (4): 397-402    DOI: 10.11902/1005.4537.2017.096
Current Issue | Archive | Adv Search |
Impacts of Initial pH and Cl- Concentration on Nantokite Hydrolysis
Jiale HE, Julin WANG()
Key Research Base of State Administration of Cultural Heritage for Evaluation of Science and Technology Research in Cultural Relics Protection Field, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
Download:  HTML  PDF(2331KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nantokite hydrolysis is the key reaction in the progression of bronze disease on cupreous objects. This transformation was researched in solutions of 0.15%~4%NaCl with initial pH value 2~7 (adjusted with 0.5 mol/L H2SO4). The solution color and the pH change were recorded, while the final products of nantokite hydrolysis were characterized by X-ray diffraction analysis. The solution became Cu ion-containing electrolyte after hydrolysis of nantokite in the solution with pH=2.0. The hydrolysis product is Cu4SO4(OH)6·2H2O in solutions with pH=2.4~3.0. However the hydrolysis product is Cu2(OH)3Cl in solutions with pH=3.3~7.0. The procession varies with the concentration of Cl-, namely in solutions with low Cl- cocentration the hydrolysis of nantokite generates cuprite at first and then gradually Cu2(OH)3Cl with the increasing Cl- concentration. In solutions with higher Cl- concentration, the hydrolysis of nantokite generates directly Cu2(OH)3Cl.

Key words:  bronze disease      nantokite      hydrolysis      chemical processes      precipitation     
Received:  23 June 2017     
ZTFLH:  TG174.1  
Fund: Supported by National Natural Science Foundation of China (51471020)

Cite this article: 

Jiale HE, Julin WANG. Impacts of Initial pH and Cl- Concentration on Nantokite Hydrolysis. Journal of Chinese Society for Corrosion and protection, 2018, 38(4): 397-402.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.096     OR     https://www.jcscp.org/EN/Y2018/V38/I4/397

Fig.1  Impact of initial pH on the color of nantokite hydrolysis solution
Fig.2  pH values of hydrolysis solutions with various initial pH values as a function of time
Fig.3  XRD spectra of final products of nantokite hydrolysis at different initial pH values
Fig.4  XRD spectrum of the product obtained from clear solution with initial pH=2 after evaporating
Fig.5  Impact of Cl- concentration on the color of nantokite hydrolysis solution
Fig.6  pH values of hydrolysis solutions with different Cl-concentrations as a function of time
Fig.7  XRD patterns of the final product of nantokite hydrolysis at different Cl- concentrations
[1] Pan L.The developing history for conservation of bronze objects and some questions[J]. Sci. Technol. Res. Cult. Rel., 2004, 2: 1(潘路. 青铜器保护简史与现存问题[J]. 文物科技研究, 2004, 2: 1)
[2] Wang J L, Lv G C, Xu C C.The research progress of corrosion mechanism of bronze cultural relics [A]. Proceedings of the Eighth national Conference on Archaeology and Conservation of Cultural Relics (Chemistry)[C]. Guangzhou, 2004: 9(王菊琳, 吕国诚, 许淳淳. 青铜文物腐蚀机理研究进展 [A]. 第八届全国考古与文物保护 (化学) 学术会议论文集[C]. 广州, 2004: 9)
[3] Scott D.Copper and Bronze in Art: Corrosion, Colorants, Conservation[M]. Los Angeles: Getty Conservation Institute, 2002: 37
[4] Alfantazi A M, Ahmed T M, Tromans D.Corrosion behavior of copper alloys in chloride media[J]. Mater. Des., 2009, 30: 2425
[5] Robbiol A L, Blengino L J M, Fiaud C. Morphology and mechanisms of formation of natural patinas on archaeological Cu-Sn alloys[J]. Corros. Sci., 1998, 40: 2083
[6] Kear G, Barker B D, Walsh F C.Electrochemical corrosion of unalloyed copper in chloride media-a critical review[J]. Corros. Sci., 2004, 46: 109
[7] Chmielová M, Seidlerová J, Weiss Z.X-ray diffraction phase analysis of crystalline copper corrosion products after treatment in different chloride solutions[J]. Corros. Sci., 2003, 45: 883
[8] Wang J L, Xu C C, Lv G H.Formation processes of CuCl and regenerated Cu crystals on bronze surfaces in neutral and acidic media[J]. Appl. Surf. Sci., 2006, 252: 6294
[9] Scott D A.Bronze disease: A review of some chemical problems and the role of relative humidity[J]. J. Am. Inst. Conserv., 1990, 29: 193
[10] Doménech-Carbó A, Doménech-Carbó M T, Costa P V. Electrochemical Basis of Corrosion of Cultural Objects[M]. Berlin: Springer, 2009: 12
[11] Wang T R, Wang J L, Wu Y Q.The inhibition effect and mechanism of l-cysteine on the corrosion of bronze covered with a CuCl patina[J]. Corros. Sci., 2015, 97: 89
[12] Dowestt M, Adriaens A, Martin C, et al.The use of synchrotron X-rays to observe copper corrosion in real time[J]. Anal. Chem., 2012, 84: 4866
[13] De Oliveira F J R, Lago D C B, Senna L F, et al. Study of patina formation on bronze specimens[J]. Mater. Chem. Phys., 2009, 115: 761
[14] Grayburn R, Dowsett M, Hand M, et al.Tracking the progression of bronze disease-A synchrotron X-ray diffraction study of nantokite hydrolysis[J]. Corros. Sci., 2015, 91: 220
[15] Di Carlo G, Giuliani C, Riccucci C, et al.Artificial patina formation onto copper-based alloys: Chloride and sulphate induced corrosion processes[J]. Appl. Surf. Sci., 2017, 421: 120
[16] Kong D C, Dong C F, Fang Y H, et al.Copper corrosion in hot and dry atmosphere environment in Turpan, China[J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1721
[17] Xu C C, Pan L.Protection of Metal Cultural Relic [M]. Beijing: Chemical Industry Press, 2012: 67(许淳淳, 潘路. 金属文物保护—全程技术方案 [M]. 北京: 化学工业出版社, 2012: 67)
[18] Zhang X M, Chai F H, Wang S L, et al.Research progress of acid precipitation in China[J]. Res. Environ. Sci., 2010, 23: 527(张新民, 柴发合, 王淑兰等. 中国酸雨研究现状[J]. 环境科学研究, 2010, 23: 527)
[19] Lin Y.The research on corrosion behavior of bronze covered with Patina in the environment simulated solutions [D]. Shanghai: East China University of Science and Technology, 2016: 8(林颖. 带锈青铜文物材料在环境模拟液中的腐蚀发展行为研究[D]. 上海: 华东理工大学, 2016: 8)
[20] Wang J L, Xu C C, Yu M.Corrosion behavior of patinated bronze and its protection in atmosphere[J]. Corros. Sci. Prot. Technol., 2005, 17: 324(王菊琳, 许淳淳, 于淼. 已锈蚀青铜在大气环境中的腐蚀发展及其保护研究[J]. 腐蚀科学与防护技术, 2005, 17: 324)
[21] Fitzgerald K P, Nairn J, Skennerton G, et al.Atmospheric corrosion of copper and the colour, structure and composition of natural patinas on copper[J]. Corros. Sci., 2006, 48: 2480
[22] Wang T R.The protection of environmental friendly corrosion inhibitors on patinated bronze [D]. Beijing: Beijing University of Chemical Technology, 2016: 1(王天然. 环境友好型缓蚀剂对带锈青铜的保护 [D]. 北京: 北京化工大学, 2016: 1)
[23] Zhong Z Q. Mei G G.A themodynamic study on the selective chlorinational process of the complex tungsten mid concentrate[J]. J. CSIMM, 1986, (5): 21(钟竹前, 梅光贵. 难溶氯化物沉淀最佳化条件和铜歧化反应在氯化溶液中的平衡[J]. 中南矿业学院学报, 1986, (5): 21)
[24] Veleva L, Quintana P, Ramanauskas R, et al.Mechanism of copper patina formation in marine environments[J]. Electrochim. Acta, 1996, 41: 1641
[25] Nassau K, Gallagher P K, Miller A E, et al.The characterization of patina components by X-ray diffraction and evolved gas analysis[J]. Corros. Sci., 1987, 27: 669
[26] Shen L.Research of bronze powder rust oxidation closed process [D]. Xi'an: Northwest University, 2008: 2(沈璐. 青铜器粉状锈氧化封闭法工艺研究 [D]. 西安: 西北大学, 2008: 2)
[27] Chen S Y, Zhang R, Wang N, et al.Research on the formation and the mechanism of transformation in harmful, deeply rusted bronze relics[J]. Sci. Conserv. Archaeol., 2014, 26(3): 47(陈淑英, 张然, 王辇等. 关于青铜文物深层有害锈形成与转化的分析研究[J]. 文物保护与考古科学, 2014, 26(3): 47)
[28] Frost R L.Raman spectroscopy of selected copper minerals of significance in corrosion[J]. Spectrochim. Acta Mol. Biomol. Spectr., 2003, 59A: 1195
[29] Liu W H, Mcphail D C, Brugger J.An experimental study of copper (I)-chloride and copper (I)-acetate complexing in hydrothermal solutions between 50 ℃ and 250 ℃ and vapor-saturated pressure[J]. Geochim. Cosmochim. Acta, 2001, 65: 2937
[30] Fritz J J.Chloride complexes of copper (I) chloride in aqueous solution[J]. J. Phys. Chem., 1980, 84: 2241
[31] Sherman D M.Complexation of Cu+ in hydrothermal NaCl brines:Ab initio molecular dynamics and energetics[J]. Geochim. Cosmochim. Acta, 2007, 71: 714
[1] WANG Yingjun, LIU Honglei, WANG Guojun, DONG Kaihui, SONG Yingwei, NI Dingrui. Investigation of Anodic Film on a Novel RE-containing Al-Alloy Al-Zn-Mg-Cu-Sc[J]. 中国腐蚀与防护学报, 2020, 40(2): 131-138.
[2] HUA Xiaozhen, HUANG Jinhua, NIE Lun, ZHOU Xianliang, PENG Xinyuan. Effect of Aging Temperature on Microstructure and Corrosion Behavior of 15-5PH Precipitation Hardened Stainless Steel[J]. 中国腐蚀与防护学报, 2014, 34(2): 131-137.
[3] ZHOU Xianliang, NIE Lun, HUA Xiaozhen, LIU Zhiyong, CUI Xia, PENG Xinyuan. EFFECTS OF SOLID SOLUTION TEMPERATURE ON PITTING CORROSION BEHAVIOR OF 15-5PH PRECIPITATION HARDENED STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2012, 32(4): 333-337.
[4] Liang Liu; Jiming Hu; Jianqing Zhang; Chunan Cao. Progress in Anti-corrosive Treatment of Metals by Silanization[J]. 中国腐蚀与防护学报, 2006, 26(1): 59-64 .
[5] LIN Leyun LIU Shaofeng ZHU Xiaolong (Beijing Genaral Research Institute for Non-Ferrous Metals). SEAWATER-CORROSION-INDUCED INTERGRANULAR PRECIPITATION IN Cu-Ni ALLOY[J]. 中国腐蚀与防护学报, 1997, 17(1): 1-6.
[6] Xu Jian; Sun Xiukui; Liu Qingquan;Chen Wenxiu(State Keg Laboratory of RSA; Institute of Metal Research; Chinese Academy of Sciences). CHARACTERISTICS OF HYDROGEN PERMEATION IN GH718 ALLOY[J]. 中国腐蚀与防护学报, 1994, 14(2): 151-155.
No Suggested Reading articles found!