Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (4): 351-357    DOI: 10.11902/1005.4537.2017.094
Current Issue | Archive | Adv Search |
Influences of Inhibitor L-Cysteine/zinc Oxide on Electrochemical Performance of 3102 Al-alloy in Alkaline Solution
Jingling MA1,2(), Shuai TONG1, Fengzhang REN1, Guangxin WANG1,2, Yaqiong LI1,2, Jiuba WEN1
1 School of Materials Science and Engineering, Henan University of Science and Technology, Luoyang 471023, China
2 Research Center for High Purity Materials, Henan University of Science and Technology, Luoyang 471023, China
Download:  HTML  PDF(3060KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The severe corrosion of Al-anode is the main barrier preventing the application of Al for air battery with alkaline solution. In this paper, the influence of organic/inorganic compound inhibitor of L-Cysteine/ZnO on the corrosion and electrochemical performance of 3102 Al-alloy were examined in 4 mol/L alkaline solutions. Results show that the corrosion of 3102 Al-alloy is significantly restrained by the L-Cysteine/ZnO compound inhibitor. The dissolution of Al-anode is mainly controlled by the charge-transfer in NaOH and NaOH L-Cysteine solutions, but in NaOH/ZnO and NaOH/L-Cysteine/ZnO solutions, the discharge is mainly controlled by the diffusion of the zincate ions and corrosion products. By adding L-Cysteine/ZnO compound inhibitor in 4 mol/L NaOH alkaline solution, the discharging performance of aluminum air battery with 3102 Al-anode was improved obviously.

Key words:  3102 Al-alloy      air battery      corrosion inhibitor      L-Cysteine      ZnO     
Received:  21 June 2017     
ZTFLH:  TM911  
Fund: Supported by Science and Technology Program of Henan Province (162102210051) and Students Research Training Program of Henan University of Science and Technology (SRTP2017031)

Cite this article: 

Jingling MA, Shuai TONG, Fengzhang REN, Guangxin WANG, Yaqiong LI, Jiuba WEN. Influences of Inhibitor L-Cysteine/zinc Oxide on Electrochemical Performance of 3102 Al-alloy in Alkaline Solution. Journal of Chinese Society for Corrosion and protection, 2018, 38(4): 351-357.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.094     OR     https://www.jcscp.org/EN/Y2018/V38/I4/351

Fig.1  Polarization curves of 3102 aluminum alloy in 4 mol/L NaOH, 4 mol/L NaOH+0.03 mol/L L-Cysteine, 4 mol/L NaOH+0.2 mol/L ZnO and 4 mol/L NaOH+0.03 mol/L L-Cysteine+0.2 mol/L ZnO solutions
Solution EcorrV vs Hg/HgO IcorrmAcm-2 RpΩcm2 Self-corrosion rate νmgcm-2min-1 Inhibition rate%
NaOH -1.60 12.31 9.7 0.29 ---
NaOH/L-Cysteine -1.57 1.13 40.5 0.15 48
NaOH/ZnO -1.68 8.65 11.8 0.16 45
NaOH/L-Cysteine /ZnO -1.68 7.67 21.9 0.12 59
NaOH(5NAl)[21] -1.67 16.1 7.9 --- ---
Table 1  Corrosion parameters of 3102 aluminum alloy in 4 mol/L NaOH, 4 mol/L NaOH+0.03 mol/L L-Cysteine, 4 mol/L NaOH+0.2 mol/L ZnO and 4 mol/L NaOH+0.03 mol/L L-Cysteine+0.2 mol/L ZnO solutions
Fig.2  Discharge curves of aluminum-air battery at discharge current of 20 mA cm-2 in 4 mol/L NaOH, 4 mol/L NaOH+0.03 mol/L L-Cysteine, 4 mol/L NaOH+0.2 mol/L ZnO and 4 mol/L NaOH+0.03 mol/L L-Cysteine+0.2 mol/L ZnO solutions
Electrolyte Operating voltage / V Anodic utilization%
NaOH 1.07 9.2
NaOH+L-Cysteine 0.96 12.4
NaOH+ZnO 1.14 16.1
NaOH+L-Cysteine+ZnO 1.16 28.7
Table 2  Discharge performances of aluminum-air cell in different electrolytes
Fig.4  SEM image (a) and EDS result (b) of 3102 aluminum alloy after discharge in 4 mol/L NaOH solution
Fig.3  SEM images of the surface of 3102 aluminum alloy after discharge in 4 mol/L NaOH (a), 4 mol/L NaOH+0.03 mol/L L-Cysteine (b), 4 mol/L NaOH+0.2 mol/L ZnO (c) and 4 mol/L NaOH+0.03 mol/L L-Cysteine+0.2 mol/L ZnO (d) solutions
Fig.5  XRD spectra of 3102 alloy after discharge in 4 mol/L NaOH+0.03 mol/L L- Cysteine (a) and 4 mol/L NaOH+0.03 mol/L L-Cysteine+0.2 mol/L ZnO (b) solutions
Fig.6  Schematic diagrams of the formation of surface film of 3102 alloy in 4 mol/L NaOH+0.2 mol/L ZnO (a) and 4 mol/L NaOH+0.03 mol/L L-Cysteine+0.2 mol/L ZnO (b) solutions
Fig.7  EIS of 3102 aluminum alloy in the solutions of 4 mol/L NaOH and 4 mol/L NaOH+0.03 mol/L L-Cysteine (a) and 4 mol/L NaOH+0.2 mol/L ZnO and 4 mol/L NaOH+0.03 mol/L L-Cysteine+0.2 mol/L ZnO (b)
Fig.8  Equivalent circuit models of EIS for 3102 aluminum alloy in the solutions of 4 mol/L NaOH and 4 mol/L NaOH+0.03 mol/L L-Cysteine (a) and 4 mol/L NaOH+0.2 mol/L ZnO and 4 mol/L NaOH+0.03 mol/L L-Cysteine+0.2 mol/L ZnO (b)
[1] Rahman M A, Wang X J, Wen C E.High energy density metal-air batteries: A review[J]. J. Electrochem. Soc., 2013, 160: A1759
[2] Hori Y, Takao J, Shomon H.Aluminium alloys for aluminium primary cell[J]. Electrochim. Acta, 1985, 30: 1121
[3] Egan D R, De León C P, Wood R J K, et al. Developments in electrode materials and electrolytes for aluminium-air batteries[J]. J. Power Sour., 2013, 236: 293
[4] El Abedin S Z, Saleh A O. Characterization of some aluminium alloys for application as anodes in alkaline batteries[J]. J. Appl. Electrochem., 2004, 34: 331
[5] Paramasivam M, Jayachandran M, Iyer S V.Influence of alloying additives on the performance of commercial grade aluminium as galvanic anode in alkaline zincate solution for use in primary alkaline batteries[J]. J. Appl. Electrochem., 2003, 33: 303
[6] Sun Z G, Lu H M, Fan L, et al.Performance of Al-air batteries based on Al-Ga, Al-In and Al-Sn alloy electrodes[J]. J. Electrochem. Soc., 2015, 162: A2116
[7] Gudić S, Smoljko I, Kliškić M.The effect of small addition of tin and indium on the corrosion behavior of aluminium in chloride solution[J]. J. Alloy. Compd., 2010, 505: 54
[8] Elango A, Periasamy V M, Paramasivam M.Study on polyaniline-ZnO used as corrosion inhibitors of 57S aluminium in 2 M NaOH solution[J]. Anti Corros. Methods Mater., 2009, 56: 266
[9] Wang J B, Wang J M, Shao H B, et al.The corrosion and electrochemical behaviour of pure aluminum in alkaline methanol solutions[J]. J. Appl. Electrochem., 2007, 37: 753
[10] Sun Z G, Lu H M.Performance of Al-0.5In as anode for Al-air battery in inhibited alkaline solutions[J]. J. Electrochem. Soc., 2015, 162: A1617
[11] Abiola O K, Otaigbe J O E. The effects of Phyllanthus amarus extract on corrosion and kinetics of corrosion process of aluminum in alkaline solution[J]. Corros. Sci., 2009, 51: 2790
[12] Wang J B, Wang J M, Shao H B, et al.The corrosion and electrochemical behavior of pure aluminum in additive-containing alkaline methanol-water mixed solutions[J]. Mater. Sci., 2009, 60: 269
[13] Zeng X X, Wang J M, Wang Q L, et al.The effects of surface treatment and stannate as an electrolyte additive on the corrosion and electrochemical performances of pure aluminum in an alkaline methanol-water solution[J]. Mater. Chem. Phys., 2010, 121: 459
[14] Rashvand avei M, Jafarian M, Moghanni Bavil Olyaei H, et al. Study of the alloying additives and alkaline zincate solution effects on the commercial aluminum as galvanic anode for use in alkaline batteries[J]. Mater. Chem. Phys., 2013, 143: 133
[15] Wang C, Qiu P D, Cai K D, et al.Research progress of the key technologies for aluminum air battery[J]. Chem. Ind. Eng. Prog., 2016, 35: 1396(王诚, 邱平达, 蔡克迪等. 铝空气电池关键技术研究进展[J]. 化工进展, 2016, 35: 1396)
[16] Revel R, Audichon T, Gonzalez S.Non-aqueous aluminium-air battery based on ionic liquid electrolyte[J]. J. Power Sour., 2014, 272: 415
[17] Gelman D, Lasman I, Elfimchev S, et al.Aluminum corrosion mitigation in alkaline electrolytes containing hybrid inorganic/organic inhibitor system for power sources applications[J]. J. Power Sour.,2015, 285: 100
[18] Wang D P, Gao L X, Zhang D Q.Corrosion inhibition of L-Cysteine for AA5052 Al-alloy anode in alkaline solution[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 311(王大鹏, 高立新, 张大全. 碱性溶液中L-半胱氨酸对AA5052铝合金阳极缓蚀作用研究[J]. 中国腐蚀与防护学报, 2015, 35: 311)
[19] Mert B D, Yazıcı B.The electrochemical synthesis of poly (pyrrole-co-o-anisidine) on 3102 aluminum alloy and its corrosion protection properties[J]. Mater. Chem. Phys., 2011, 125: 370
[20] Liang F, Lu H M, Leng J.Performance of fine structured aluminum anodes in neutral and alkaline electrolytes for Al-air batteries[J]. Electrochim. Acta, 2015, 165: 22
[21] Cho Y J, Park I J, Lee H J, et al.Aluminum anode for aluminum-air battery-Part I: Influence of aluminium purity[J]. J. Power Sour., 2015, 277: 370
[22] Ma J L, Wen J B.Corrosion analysis of Al-Zn-In-Mg-Ti-Mn sacrificial anode alloy[J]. J. Alloy. Compd., 2010, 496: 110
[23] Moutarlier V, Gigandet M P, Normand B, et al.EIS characterisation of anodic films formed on 2024 aluminium alloy, in sulphuric acid containing molybdate or permanganate species[J]. Corros. Sci., 2005, 47: 937
[24] Zhang Y, Li L R, Yuan S S, et al.Electrical properties of the interfaces in bulk heterojunction organic solar cells investigated by electrochemical impedance spectroscopy[J]. Electrochim. Acta, 2013, 109: 221
[25] Osório R, Freitas E S, Garcia A.EIS parameters and cell spacings of an Al-Bi alloy in NaCl solution[J]. Electrochim. Acta, 2013, 108: 781
[26] Chen X, Tian W M, Li S M, et al.Effect of temperature on corrosion behavior of 3003 aluminum alloy in ethylene glycol-water solution[J]. Chin. J. Aeronaut., 2016, 29: 1142
[1] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[2] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[3] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[4] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[5] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[6] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[7] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] Yaqiong LI,Jingling MA,Guangxin WANG,Yujie ZHU,Yongfa SONG,Jingli ZHANG. Effect of Sodium Phosphate and Sodium Dodecylbenzene-sulfonate on Discharge Performance of AZ31 Magnesium Air Battery[J]. 中国腐蚀与防护学报, 2018, 38(6): 587-593.
[9] Zhenning CHEN,Rihui CHEN,Jinjie PAN,Yanna TENG,Xingyue YONG. Organic/inorganic Compound Corrosion Inhibitor of L921A Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2017, 37(5): 473-478.
[10] Shuaihao HAN,Hongyu CEN,Zhenyu CHEN,Yubing QIU,Xingpeng GUO. Inhibition Behavior of Imidazoline Inhibitor in Corrosive Medium Containing Crude Oil and High-Pressure CO2[J]. 中国腐蚀与防护学报, 2017, 37(3): 221-226.
[11] Xiang ZUO,Yufeng JIANG,Ting CHI,Xin HU,Dongmei CAO,Feng CAI. Synthesis and Performance of New Benzotriazole Derivatives with Long Alkyl Chain as Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2016, 36(5): 415-420.
[12] Jingling MA,Fengzhang REN,Guangxin WANG,Yi XIONG,Jiuba WEN. Electrochemical Performance of Al-Mg-Sn-Ga Aluminum Anode Alloy[J]. 中国腐蚀与防护学报, 2016, 36(5): 421-426.
[13] Tiejun SU, Yunbai LUO, Kehua LI, Fanxiu LI, Shiying DENG, Wei XI. Corrosion Inhibition Performance of Benzimidazole N-Mannich Base for Mild Steel in Hydrochloric Acid[J]. 中国腐蚀与防护学报, 2015, 35(5): 415-422.
[14] Lijuan FENG,Kangwen ZHAO,Huaiyu YANG,Nan TANG,Fuhui WANG,Tie SHANGGUAN. Synergistic Effect of Inhibitors of an Imidazoline Derivative and Tetraethylenepentamine on Corrosion Inhibition of Steel Rebar in an Artifial Concrete Pore Solution[J]. 中国腐蚀与防护学报, 2015, 35(4): 297-304.
[15] Yurong FANG,Chaoyang FU. Corrosion and Corrosion Inhibition of 304 Stainless Steel in Acidic FeCl3 Solution with Applied Inhibitor K2Cr2O7 and Ultrasonic Vibration[J]. 中国腐蚀与防护学报, 2015, 35(4): 305-310.
No Suggested Reading articles found!