Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (2): 203-209    DOI: 10.11902/1005.4537.2017.030
Current Issue | Archive | Adv Search |
Corrosion Resistance of Fe-based Bulk Metallic Glass with Sulfide Inclusions in HCl Solution
Yong HUANG, Shanlin WANG(), Shuaixing WANG, Yubing GONG, Liming KE
Light Alloy Processing Science and Defence Technology Key Laboratory, Nanchang Hangkong University, Nanchang 330063, China
Download:  HTML  PDF(2289KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of Fe-based bulk metallic glass with sulfide inclusions in HCl solution was investigated by electrochemical test technique and immersion test. Results showed that the Fe-based bulk metallic glass presented obvious passivation characteristic in solutions with various amount of HCl at different temperature, however its corrosion resistance gradually decreased with the increasing HCl-concentration and temperature. The as-casted amorphous alloy had just only one capacitive loop, which indicated that the faraday process of the electrode system was controlled by the electrode potential. The SEM corrosion morphology after immersion tests showed that sulfide inclusions presented non-obvious influence on the corrosion behavior of Fe-based bulk metallic glass, whilst non-obvious pitting corrosion was triggered.

Key words:  sulfide inclusion      Fe-based bulk metallic glass      corrosion resistance      HCl solution     
Received:  22 February 2017     
Fund: Supported by National Natural Science Foundation of China (51461031), Jiangxi Science and Technology Key R&D Plan (20161BBH80031) and Jiangxi Provincial Education Department Fund (GJJ150733)

Cite this article: 

Yong HUANG, Shanlin WANG, Shuaixing WANG, Yubing GONG, Liming KE. Corrosion Resistance of Fe-based Bulk Metallic Glass with Sulfide Inclusions in HCl Solution. Journal of Chinese Society for Corrosion and protection, 2018, 38(2): 203-209.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.030     OR     https://www.jcscp.org/EN/Y2018/V38/I2/203

Alloy C Si B P Cr Mn Ti Al Ni Ca O N S Fe
Fe-C 4.28 0.46 --- 0.20 --- 0.20 0.03 --- 0.09 --- --- --- 0.04 94.70
Fe-P 0.02 0.01 --- 26.28 --- 0.69 0.35 --- --- 0.01 --- --- 0.01 72.63
Fe-B 0.17 0.65 19.75 0.04 --- 0.21 --- 0.05 --- --- 0.02 0.01 --- 79.10
Fe-Cr 1.43 0.33 --- 0.02 55.49 --- --- --- --- --- 0.24 0.01 --- 42.48
Fe-S 0.22 1.13 --- --- --- --- --- --- --- --- 1.29 --- 49.7 47.64
Table 1  Chemical compositions of the used industrial raw materials
(mass fraction / %)
Fig.1  XRD pattern of the amorphous casting rod
Fig.2  Fracture morphology of the amorphous cast rod (a) and the magnified image of area A in Fig.2a (b)
Fig.3  EDS analysis result of the inclusion
Fig.4  Potentiodynamic polarization curves of the amorphous cast rod in HCl solutions with different concentrations
C(HCL) / molL-1 Icorr / μAcm-2 Ipass / μAcm-2 Ecorr / V Epit-Epass / V Rs / Ωcm-2 CPE / μFcm-2 Rp / Ωcm-2
0.1 9.57 117.48 -0.38 1.32 50.73 14.28 50177.00
0.5 56.49 682.33 -0.43 1.35 6.96 7.42 43840.00
1 50.12 1166.82 -0.33 1.26 5.88 25.17 20809.00
2 148.25 2297.21 -0.43 1.11 4.29 30.11 16385.00
4 524.81 1548.82 -0.17 1.11 2.61 74.33 16566.00
Table 2  Fitting results of potentiodynamic polarization curves and EIS of the amorphous cast rod in HCl solutions with different concentrations
Fig.5  Patentiostatic polarization curves of the amorphous cast rod in HCl solutions with different concentrations
Fig.6  EIS (a) and the equivalent circuit (b) of the amorphous cast rod in HCl solutions with different concentrations
Fig.7  Potentiodynamic polarization curves of the amorphous cast rod in 1 mol/L HCl solution at different temperatures
Temp. / ℃ Icorr / μAcm-2 Ipass / μAcm-2 Ecorr / V Epit-Epass / V Rs / Ωcm-2 CPE / μFcm-2 Rp / Ωcm-2
20 33.88 154.88 -0.32 1.24 5.88 25.17 28209.00
40 111.17 382.82 -0.28 1.21 4.78 108.27 6169.00
60 125.31 954.99 -0.32 1.13 4.00 499.41 733.90
Table 3  Fitting results of potentiodynamic polarization curves and EIS of the amorphous cast rod in 0.5 mol/L HCl solution at different temperatures
Fig.8  Patentiostatic polarization curves of the amorphous cast rod in 1 mol/L HCl solution at different temperatures
Fig.9  EIS of the amorphous cast rod in 1 mol/L HCl solution at different temperatures
Fig.10  Corrosion morphologies of the amorphous cast rod after immersion in 0.5 mol/L HCl solution for 0 h (a), 24 h (b), 72 h (c) and 168 h (d)
[1] Inoue A, Shen B L, Takeuchi A.Fabrication, properties and applications of bulk glassy alloys in late transition metal-based systems[J]. Mater. Sci. Eng., 2006, A441: 18
[2] Hashimoto K.2002 W.R. Whitney award lecture: In pursuit of new corrosion-resistant alloys[J]. Corrosion, 2002, 58: 715
[3] Lu Z P, Liu C T, Thompson J R, et al.Structural amorphous steels[J]. Phys. Rev. Lett., 2004, 92: 245503
[4] Zohdi A, Bozorg M, Arabi R, et al.Corrosion performance and metal ion release of amorphous and nanocrystalline Fe-based alloys under simulated body fluid conditions[J]. Mater. Lett., 2013, 94: 193
[5] Chen Q J, Yu H Y, Zhou X L, et al.Effect of crystalline behavior on corrosion resistance of Fe-based bulk amorphous alloy[J]. Hot Work. Technol., 2012, 41(8): 1(陈庆军, 余慧燕, 周贤良等. 晶化行为对Fe基块体非晶合金腐蚀性能的影响[J]. 热加工工艺, 2012, 41(8): 1)
[6] Botta W J, Berger J E, Kiminami C S, et al.Corrosion resistance of Fe-based amorphous alloys[J]. J. Alloy. Compd., 2014, 586: S105
[7] Li X, Qin C L, Kato H, et al.Mo microalloying effect on the glass-forming ability, magnetic, mechanical and corrosion properties of (Fe0.76Si0.096B0.084P0.06)100-xMox bulk glassy alloys[J]. J. Alloy. Compd.,2011, 509: 7688
[8] Souza C A C, May J E, Bolfarini L, et al. Influence of composition and partial crystallization on corrosion resistance of amorphous Fe-M-B-Cu(M=Zr, Nb, Mo) alloys[J]. J. Non-Cryst. Solids, 2001, 284: 99
[9] Wang Y, Zheng Y G, Wang J Q, et al.Passivation behavior of Fe-based amorphous metallic coating in NaCl and H2SO4 solutions[J]. Acta Metall. Sin., 2015, 51: 49(王勇, 郑玉贵, 王建强等. 铁基非晶涂层在NaCl和H2SO4溶液中的钝化行为[J]. 金属学报, 2015, 51: 49)
[10] Wang S L, Cheng J C, Yi S H, et al.Precipitation of sulfide particle in situ formed in Fe-based bulk metallic glass[J]. Foundry, 2013, 62: 491(王善林, 成京昌, 李承勋等. 大块铁基非晶中硫化物析出行为研究[J]. 铸造, 2013, 62: 491)
[11] Li H X, Lu Z P, Yi S.Estimation of the glass forming ability of the Fe-based bulk metallic glass Fe68.8C7.0Si3.5B5.0P9.6Cr2.1Mo2.0Al2.0 that contains non-metallic inclusions[J]. Met. Mater. Int., 2009, 15: 7
[12] Li G, Huang L, Dong Y G, et al.Corrosion behavior of Fe65.5Cr4Mo4Ga4P12C5B5.5 bulk amorphous alloys in different media[J]. Sci. Sin. Phys., Mech. Astron., 2010, 40: 717(李工, 黄蕾, 董雁国等. Fe65.5Cr4Mo4Ga4P12C5B5.5块体非晶合金不同介质中的腐蚀行为[J]. 中国科学: 物理学力学天文学, 2010, 40: 717)
[13] Wang L, Chao Y S.Corrosion behaviors of bulk amorphous Fe41Co7Cr15Mo14C15B6Y2 alloy in NaOH solution[J]. J. Funct. Mater., 2010, 41: 1849(王莉, 晁月盛. 铁基块体非晶合金在NaOH溶液中的腐蚀行为[J]. 功能材料, 2010, 41: 1849)
[14] Qin H P, Chen H T, Lang Y P, et al.Mechanism of induced pitting corrosion in 439M ferritic stainless steel[J]. Iron Steel, 2015, 50(9): 81(覃怀鹏, 陈海涛, 郎宇平等. 439M铁素体不锈钢点蚀诱发机理[J]. 钢铁, 2015, 50(9): 81)
[15] Zhang C Y, Zhang Q, Li J G, et al.Micro-corrosion test research on pitting initiation site of the inclusions of carbon steel and low alloy steel in chlorine ion solution[J]. Metall. Anal., 2014, 34(1): 22(张春亚, 张奇, 李继高等. 碳钢及低合金钢在氯离子溶液中夹杂物诱发点蚀位置显微腐蚀实验探讨[J]. 冶金分析, 2014, 34(1): 22)
[16] Wang Y, Jiang S L, Zheng Y G, et al.Electrochemical behaviour of Fe-based metallic glasses in acidic and neutral solutions[J]. Corros. Sci., 2012, 63: 159
[17] Guo R Q, Zhang C, Yang Y, et al.Corrosion and wear resistance of a Fe-based amorphous coating in underground environment[J]. Intermetallics, 2012, 30: 94
[18] Hu L H.Pitting features of 1Cr18Ni9Ti stainless steel in the NaCl solution [D]. Nanchang: Nanchang Hangkong University, 2006(胡丽华. 1Cr18Ni9Ti不锈钢在NaCl介质中的点蚀特征研究 [D]. 南昌: 南昌航空工业学院, 2006)
[19] Zuo Y, Xiong J P.Engineering Materials and Corrosion Resistance[M]. Beijing: China Petrochemical Press, 2008: 12(左禹, 熊金平. 工程材料及其耐蚀性 [M]. 北京: 中国石化出版社, 2008: 12)
[20] Lekatou A, Marinou A, Patsalas P, et al.Aqueous corrosion behaviour of Fe-Ni-B metal glasses[J]. J. Alloy. Compd., 2009, 483: 514
[21] Liu D X.The Corrosion and Protection of Materials [M]. Xi'an: Northwestern Polytechnical University Press, 2006: 108(刘道新. 材料的腐蚀与防护 [M]. 西安: 西北工业大学出版社, 2006: 108)
[22] Zhou Q C, Xu N X, Shi S T.Study on the passivation film of the nickel surface by ellipsometry[J]. J. Chin. Soc. Corros. Prot., 1990, 10: 287(周庆初, 徐乃欣, 石声泰. 椭圆偏振法研究镍表面的钝化膜[J]. 中国腐蚀与防护学报, 1990, 10: 287)
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[3] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[4] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[5] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[6] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[7] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[8] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
[9] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[10] YANG Yinchu,FU Xiuqing,LIU Lin,MA Wenke,SHEN Moqi. Electrochemical Corrosion of Ni-P-BN(h)-Al2O3 Composite Coating Deposited by Spray Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(1): 57-62.
[11] XIAO Jintao,CHEN Yan,XING Mingxiu,JU Pengfei,MENG Yingen,WANG Fang. Effect of Process Parameters on Corrosion Resistance of Anodizing Film on 2195 Al-Li Alloy[J]. 中国腐蚀与防护学报, 2019, 39(5): 431-438.
[12] SHI Kunyu,ZHANG Jinzhong,ZHANG Yi,WAN Yi. Preparation and Corrosion Resistance of Nb2N Coating on TC4 Ti-alloy[J]. 中国腐蚀与防护学报, 2019, 39(4): 313-318.
[13] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[14] Duoyun CHENG,Jinbin ZHAO,Bo LIU,Cheng JIANG,Xiaoqian FU,Xuequn CHENG. Corrosion Behavior of High Nickel and Conventional Weathering Steels Exposed to a Harsh Marine Atmospheric Environment at Maldives[J]. 中国腐蚀与防护学报, 2019, 39(1): 29-35.
[15] Delin LAI,Gang KONG,Chunshan CHE. Effect of Sodium Silicate Sealing on Corrosion Resistance of TiO2Conversion Film on Hot-dip Galvanized[J]. 中国腐蚀与防护学报, 2018, 38(6): 607-614.
No Suggested Reading articles found!