Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (2): 191-196    DOI: 10.11902/1005.4537.2017.022
Current Issue | Archive | Adv Search |
Microstructure and Corrosion Resistance of Solidified Zn-Al-Mg Alloys
Guangrui JIANG(), Guanghui LIU
Beijing Key Laboratory of Green Recyclable Process for Iron & Steel Production Technology, Shougang Group Co., Ltd, Research Institute of Technology, Beijing 100043, China
Download:  HTML  PDF(1950KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Due to high protection performance for cut edges, much attention was focused on Zn-Al-Mg coating. Considering hot-dip galvanizing technology was widely applied for the Zn-Al-Mg coating, solidification should strongly influence its microstructure and corrosion properties. In this work, a Zn-Al-Mg alloy was melted in a resistance furnace and then cooled to room temperature with different solidification processes, including water quench, air cooling and furnace cooling. Scanning electron microscopy (SEM) was applied to analyzed the microstructure of the alloys solidified with different processes. Moreover, the effect of solidification on corrosion resistance was studied by electrochemical method. Results show that microstructure of the Zn-Al-Mg alloy consists of Zn-rich primary grains and eutectic of Zn, Al and Mg. It could be found that among others, the furnace cooled Zn-Al-Mg alloy presents the largest size and ratio of the primary grains. With the increasing solidification rate, the primary grains turn to be finer and more eutectic appears, besides, the eutectic transforms from granular-like to lamellar-like. Electrochemical test indicates that the corrosion potentials for all the alloys solidified with different ways are more or less the same level but their corrosion currents and plots of electrochemical impedance spectroscopy (EIS) are remarkable different. The corrosion current of the furnace cooled alloy is the smallest, which means the highest corrosion resistance.

Key words:  Zn-Al-Mg alloy      solidification      microstructure      corrosion resistance      coating     
Received:  12 February 2017     
Fund: Supported by The National Key Research and Development Program of China (2017YFB0304305)

Cite this article: 

Guangrui JIANG, Guanghui LIU. Microstructure and Corrosion Resistance of Solidified Zn-Al-Mg Alloys. Journal of Chinese Society for Corrosion and protection, 2018, 38(2): 191-196.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.022     OR     https://www.jcscp.org/EN/Y2018/V38/I2/191

Fig.1  Microstructures of the Zn-Al-Mg alloy solidified under the conditions of water quench (a), air cooling (b) and furnace cooling (c) and magnified images of eutectic structures in the white rectangle areas corresponding to Fig.1a (d), Fig.1b (e) and Fig.1c (f), respectively
Fig.2  Grain size and volume ratio of primary crystals of the Zn-Al-Mg alloy with different solidification conditions
Solidification Structure Position Mg Al Zn
Water cooling Eutectic 1 0.0 46.0 54.0
Eutectic 2 4.5 5.4 90.1
Eutectic 3 30.7 5.8 63.5
Primary 4 0.0 7.8 92.2
Air cooling Eutectic 1 0.0 50.4 49.6
Eutectic 2 0.0 4.2 95.8
Eutectic 3 32.3 2.0 65.7
Primary 4 0.0 4.1 95.9
Furnace cooling Eutectic 1 0.0 79.4 20.6
Eutectic 2 0.0 3.7 96.3
Eutectic 3 29.2 2.6 68.2
Primary 4 0.0 2.4 97.6
Table 1  Contents of Mg, Al and Zn at different positions in the Zn-Al-Mg alloy as shown in Fig.3
(atomic fraction / %)
Fig.3  Polarization curves of the Zn-Al-Mg alloy casted under different solidification conditions
Solidification Ecorr / V vs SCE Icorr / μAcm-2
Water cooling -1.03 5.5
Air cooling -1.04 4.1
Furnace cooling -1.05 2.1
Table 2  Electrochemical parameters of the Zn-Al-Mg alloy casted under different solidification conditions
Fig.4  Nyquist plots (a) and Bode phase diagrams (b) of the Zn-Al-Mg alloy
Fig.5  Fitted equivalent circuit of EIS of the Zn-Al-Mg alloy
Solidification Rs / Ωcm2 CPE / Y01 CPE / n1 R1 / Ωcm2 CPE / Y02 CPE / n2 R2 / Ωcm2
Water cooling 16.3 9.94×10-4 6.38×10-1 254 2.71×10-5 8.31×10-1 193
Air cooling 18.5 3.66×10-5 8.00×10-1 232 1.76×10-3 5.64×10-1 358
Furnace cooling 17.4 8.75×10-4 6.59×10-1 285 2.53×10-5 8.10×10-1 417
Table 3  Fitted parameters of EIS of the Zn-Al-Mg alloy
[1] Zhang Q F, Liu B J, Huang J Z.Modern Continuous Hot Dip Galvanizing of Steel Sheets [M]. Beijing: Metallurgical Industry Press, 2007: 1(张启富, 刘邦津, 黄建中. 现代钢带连续热镀锌 [M]. 北京: 冶金工业出版社, 2007: 1)
[2] Angeli G, Brisberger R, Bulter M, et al.Zinc-magnesium-aluminium for automotive industry [A]. Proceedings of 9th International Conference on Zinc and Zinc Alloy Coated Steel Sheet & 2nd Asia-Pacific Galvanizing Conference [C]. Beijing: Metallurgical Industry Press, 2013: 632
[3] Nishimura K, Kato K, Shindo H.Highly corrosion-resistant Zn-Mg alloy galvanized steel sheet for building construction materials[J]. Nippon Steel Tech. Rep., 2000, 81: 85
[4] Prosek T, Nazarov A, Goodwin F, et al.Improving corrosion stability of Zn-Al-Mg by alloying for protection of car bodies[J]. Surf. Coat. Technol., 2016, 306: 439
[5] Jiang G R, Wang H Q, Li M, et al.Corrosion properties of steel sheet with zinc-base alloyed coatings[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 354(蒋光锐, 王海全, 黎敏等. 锌基合金镀层钢板的耐蚀性研究[J]. 中国腐蚀与防护学报, 2017, 37: 354)
[6] Seto K.Recent progress and outlook for Zinc-and Zinc alloy-coated steel sheets in Japan [A]. Proceedings of 7th International Conference on Zinc and Zinc Alloy Coated Steel Sheet[C]. Osaka: The Iron and Steel Institute of Japan, 2007: 1
[7] Li F, Lv J S, Yang H G, et al.Research on ZnAlMg coated steel sheet[J]. Steel Roll., 2013, 30(2): 45(李锋, 吕家舜, 杨洪刚等. 锌铝镁镀层钢板的研究进展[J]. 轧钢, 2013, 30(2): 45)
[8] Komatsu A, Izutani H, Tsujimura T, et al.Corrosion resistance and protection mechanism of hot-dip Zn-Al-Mg alloy coated steel sheetunder accelerated corrosion environment[J]. Tetsu-to-Hagane, 2000, 86: 534
[9] Thierry D, Pro?ek T.Corrosion protection and corrosion mechanisms of continuous galvanized steel sheet with focus on new coating alloys [A]. Proceedings of 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet[C]. Milano: Associazione Italiana di Metallurgia, 2011: IL06
[10] Azevedo M S, Allély C, Ogle K, et al.Corrosion mechanisms of Zn(Mg, Al) coated steel: 2. The effect of Mg and Al alloying on the formation and properties of corrosion products in different electrolytes[J]. Corros. Sci., 2015, 90: 482
[11] Sulliva J, Elvins J.In situ monitoring of the microstructural corrosion mechanisms of zinc-magnesium-aluminium galvanising alloys using time lapse microscopy [A]. Proceedings of 8th International Conference on Zinc and Zinc Alloy Coated Steel Sheet[C]. Milano: Associazione Italiana di Metallurgia, 2011: 62
[12] Yao C Z, Lv H B, Zhu T P, et al.Effect of Mg content on microstructure and corrosion behavior of hot dipped Zn-Al-Mg coatings[J]. J. Alloy. Compd., 2016, 670: 239
[13] Tong C, Su X P, Wang J H, et al.Effect of Mg addition on solidification structure and corrosion resistance of Zn-6%Al alloy coating[J]. Hot Work. Technol., 2012, 41(12): 99(童晨, 苏旭平, 王建华等. Mg对Zn-6%Al镀层凝固组织的影响及耐腐蚀性的研究[J]. 热加工工艺, 2012, 41(12): 99)
[14] Lu J T, Jiang A H, Che C S.Effects of cooling rate on solidification structure of Zn-3.5Mg alloy[J]. Spec. Cast. Nonferrous Alloy., 2009, 29: 310(卢锦堂, 江爱华, 车淳山. 冷却速率对Zn-3.5Mg合金凝固组织的影响[J]. 特种铸造及有色合金, 2009, 29: 310)
[15] Elvins J, Spittle J A, Worsley D A.Microstructural changes in zinc aluminium alloy galvanising as a function of processing parameters and their influence on corrosion[J]. Corros. Sci., 2005, 47: 2740
[16] Ma R N, Fan Y Z, Du A, et al.Effect of cooling rate on morphology and corrosion resistance of Zn-Al-Mg alloy[J]. Trans. Mater. Heat Treat., 2015, 36(4): 49(马瑞娜, 范永哲, 杜安等. 冷却速度对Zn-Al-Mg合金组织及腐蚀性能的影响[J]. 材料热处理学报, 2015, 36(4): 49)
[17] Stern M, Geary A L.Electrochemical polarization I. A theoretical analysis of the shape of polarization curves[J]. J. Electrochem. Soc., 1957, 104: 56
[18] Ehl R G, Ihde A J.Faraday's electrochemical laws and the determination of equivalent weights[J]. J. Chem. Educ., 1954, 31: 226
[19] Liang H, Chen S L, Chang Y A.A thermodynamic description of the Al-Mg-Zn system[J]. Metall. Mater. Trans., 1997, 28A: 1725
[20] Villars P, Prince A, Okamoto H.Handbook of Ternary Alloy Phase Diagrams[M]. Materials Park, OH: ASM International, 1995: 3933
[21] Persson D, Thierry D, LeBozec N, et al. In situ infrared reflection spectroscopy studies of the initial atmospheric corrosion of Zn-Al-Mg coated steel[J]. Corros. Sci., 2013, 72: 54
[22] Schuerz S, Fleischanderl M, Luckeneder G H, et al.Corrosion behaviour of Zn-Al-Mg coated steel sheet in sodium chloride-containing environment[J]. Corros. Sci., 2009, 51: 2355
[1] LIU Yang, WU Jinyi, YAN Xiaoyu, CHAI Ke. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[2] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[4] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[5] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[6] BAO Ren, ZHOU Genshu, LI Hongwei. Preparation of High-tin Bronze Corrosion-resistant Coating by Potentiostatic Pulse Electrodeposition[J]. 中国腐蚀与防护学报, 2020, 40(6): 585-591.
[7] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[8] LIU Haixia, HUANG Feng, YUAN Wei, HU Qian, LIU Jing. Corrosion Behavior of 690 MPa Grade High Strength Bainite Steel in a Simulated Rural Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 416-424.
[9] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[10] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[11] CAO Jingyi, FANG Zhigang, CHEN Jinhui, CHEN Zhixiong, YIN Wenchang, YANG Yange, ZHANG Wei. Preparation and Properties of Micro-arc Oxide Film with Single Dense Layer on Surface of 5083 Aluminum Alloy[J]. 中国腐蚀与防护学报, 2020, 40(3): 251-258.
[12] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[13] CAO Jingyi, WANG Zhiqiao, LI Liang, MENG Fandi, LIU Li, WANG Fuhui. Failure Mechanism of Organic Coating with Modified Graphene Under Simulated Deep-sea Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[14] WANG Le,YI Danqing,LIU Huiqun,JIANG Long,FENG Chun. Effect of Ru on Corrosion Behavior of Ti-6Al-4V Alloy and Its Mechanism[J]. 中国腐蚀与防护学报, 2020, 40(1): 25-30.
[15] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
No Suggested Reading articles found!