Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (2): 147-157    DOI: 10.11902/1005.4537.2017.020
Current Issue | Archive | Adv Search |
Influence of Soil Water Content Adjusted by Simulated Acid Rain on Corrosion Behavior of X80 Steel in Red Soil
Shuaixing WANG1,2, Nan DU1(), Daoxin LIU2, Jinhua XIAO1, Danping DENG1
1 National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology, Nanchang Hangkong University, Nanchang 330063, China
2 Institute of Corrosion and Protection, Northwestern Polytechnical University, Xi'an 710072, China
Download:  HTML  PDF(5004KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The electrochemical behavior and corrosion feature of X80 steel in red soil with different moisture contents adjusted by simulated acid rain were studied by means of potentiodynamic polarization curves, EIS, three-dimensional video microscope, SEM and XRD. Results show that the corrosion rate (Rct-1), corrosion type and corrosion mechanism of X80 steel in red soil irrigating with simulated acid rain were significantly dependent on the soil water content (SWC). By 15% (mass fraction) SWC, the overall corrosion process was controlled by electrochemical activation reaction, the steel surface underwent pitting and filiform corrosion, and Rct-1 was small. With the increase of SWC, Rct-1 increased, and the corrosion type of the steel surface varied from the localized pitting to the uniform corrosion. When SWC was 25%, a loose and reddish-brown corrosion product layer was formed by the incorporation of soil particles. In the acid rain-saturated soil, the steel surface underwent severe ulcer-like corrosion, the corrosion mechanism varied upon the exposure time. The corrosion process was mainly controlled by a charge-transfer process at the initial stage, but the subsequent corrosion processes were controlled by a combination of activation control and diffusion control after 15 d. In addition to the soil acidity, the condensation phenomenon should be taken into account to understand the corrosive nature of red soil. When X80 steel was exposed in the soil at Nanchang area, the time with moisture film on the steel surface could account for 98.6% of the total exposure time, which means that the corrosion reaction of X80 steel in the acidic red soil could occur at almost any time.

Key words:  X80 steel      corrosion      soil water content (SWC)      simulated acid rain      condensation     
Received:  06 February 2017     
Fund: Supported by National Natural Science Foundation of China (51161021)

Cite this article: 

Shuaixing WANG, Nan DU, Daoxin LIU, Jinhua XIAO, Danping DENG. Influence of Soil Water Content Adjusted by Simulated Acid Rain on Corrosion Behavior of X80 Steel in Red Soil. Journal of Chinese Society for Corrosion and protection, 2018, 38(2): 147-157.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.020     OR     https://www.jcscp.org/EN/Y2018/V38/I2/147

Fig.1  OM metallograph (a) and SEM image (b) of X80 pipeline steel
Fig.2  Schematic diagram for verifing condensation corrosion
Fig.3  Polarization curves of X80 steel exposed for 1 d in red soils leached by simulated acid rain and the different contents of water
Fig.4  Nyquist plots (a, c, e, g) and Bode phase plots (b, d, f, h) of X80 steel exposed in acid rain-red soils with 15% (a, b), 25% (c, d), 30% (e, f) and 37% (g, h) SWC
Fig.5  Equivalent circuit used to fit EIS of X80 steelexposed in Nanchang red soil
SWC / mass fraction Exposure time / d Rs / Ωcm2 Cs / Fcm-2 Rct / Ωcm2 Qdl / Fcm-2 ndl
15% 1 5775 7.906×10-8 6186 8.416×10-5 0.7001
4 5744 6.242×10-8 6013 9.627×10-5 0.6777
7 5248 1.814×10-9 6518 2.891×10-5 0.6947
15 3781 1.069×10-9 5558 8.127×10-5 0.6255
30 3151 6.799×10-8 4982 1.531×10-4 0.5819
25% 1 1479 1.094×10-8 3282 2.294×10-5 0.7890
4 1047 9.561×10-8 4278 1.712×10-5 0.8541
7 1030 7.044×10-8 4334 3.699×10-5 0.7652
15 575 2.927×10-8 3693 2.136×10-5 0.7576
30 518 2.877×10-8 2795 3.927×10-5 0.6887
30% 1 1420 2.003×10-9 3082 3.504×10-5 0.7751
4 1292 2.472×10-9 3431 1.363×10-5 0.7440
7 1073 2.396×10-9 3651 5.935×10-5 0.7188
15 847 3.597×10-8 5914 7.826×10-4 0.6063
30 817 1.795×10-8 6717 2.175×10-4 0.5686
37% 1 644 1.287×10-8 1564 3.937×10-5 0.8053
4 1169 1.406×10-9 2596 3.408×10-5 0.8306
7 933 1.166×10-9 5309 1.529×10-4 0.6151
15 625 3.351×10-9 8754 2.737×10-4 0.5104
30 701 2.609×10-9 7762 2.432×10-4 0.4458
Table 1  EIS fitting parameters for X80 steel exposed in red soil with various SWC
Fig.6  Variations of Rct-1 with time for X80 steel exposed in acid rain red soils with different SWC
Fig.7  3D (a, c, e, g) and SEM images (b, d, f, h) of X80 steel exposed in acid rain red soil with 15% (a, b), 25% (c, d), 30% (e, f) and 37% (g, h) SWC
Fig.8  XRD patterns of X80 steel after exposure in acid rain red soil with different SWC for 30 d
Fig.9  Schematics of moisture droplets or film on X80 steel and corrosion mechanism models of X80 steel during exposure in acid rain red soils with 15% (a), 20%~30% (b) and 37% (c) SWC
Fig.10  Influences of SWC and AT on critical time for air humidity above red soil to reach 99 RH%: (a) AT: 28~30 ℃, ARH: 55%~60%; (b) AT: 18~20 ℃, ARH: 50%~55%; (c) AT: 13~15 ℃, ARH: 55%~60%; (d) AT: 6~9 ℃, ARH: 55%~60%
Month Precipitation / mm Precipitation days pH of rain Average temperature / ℃ Average DIF / ℃ SWC / %
Jan. 74 10.0 4.15 5.3 5.7 13%
Feb. 132 13.2 4.23 6.9 6.0 30%
Mar. 201 18.0 4.48 10.9 6.5 Saturation
Apr. 187 17.7 5.07 17.3 7.8 Saturation
May 223 16.5 4.08 22.3 15.9 Saturation
Jun. 306 15.5 4.26 26.9 14.6 Saturation
Jul. 144 10.8 4.21 31.3 7.6 25%
Aug. 128 10.3 4.52 30.1 7.2 22%
Sep. 68 7.7 4.37 24.6 12.4 12%
Oct. 59 8.8 4.04 19.4 7.4 8%
Nov. 86 7.9 3.95 13.3 7.5 15%
Dec. 42 7.8 3.74 7.8 7.3 6%
Table 2  Climate data of Nanchang in 2014 and the sampling data of red soil
Fig.11  Formation time spectrum of continuous moisture film on the surface of X80 steel during exposure in Nanchang red soil
[1] Niu J, Qi L H, Liu Y L, et al.Tempering microstructure and mechanical properties of pipeline steel X80[J]. Trans. Nonferrous Met. Soc. China, 2009, 19: 573
[2] Borovikov A V.Production of straight-seam large-diameter pipes made of steel of strength class X80[J]. Metallurgist, 2003, 47: 415
[3] Li X G, Du C W, Dong C F, et al.Corrosion Proterty and Experimental Research of X70 Pipline Steel [M]. Beijing: Science Press, 2006(李晓刚, 杜翠薇, 董超芳等. X70钢的腐蚀行为与试验研究 [M]. 北京: 科学出版社, 2006)
[4] Cole I S, Marney D.The science of pipe corrosion: A review of the literature on the corrosion of ferrous metals in soils[J]. Corros. Sci., 2012, 56: 5
[5] Murray J N, Moran P.J. Influence of moisture on corrosion of pipeline steel in soils using in situ impedance spectroscopy[J]. Corrosion, 1989, 45: 34
[6] El-Shamy A M, Shehata M F, Ismail A I M. Effect of moisture contents of bentonitic clay on the corrosion behavior of steel pipelines[J]. Appl. Clay Sci., 2015, 114: 461
[7] Noor E A, Al-Moubaraki A H. Influence of soil moisture content on the corrosion behavior of X60 steel in different soils[J]. Arab. J. Sci. Eng., 2014, 39: 5421
[8] Yao H P, Yan M C, Yang X, et al.Electrochemical behavior of X80 pipeline steel in the initial stage of corrosion in an acidic red soil[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 472(么惠平, 闫茂成, 杨旭等. X80管线钢红壤腐蚀初期电化学行为[J]. 中国腐蚀与防护学报, 2014, 34: 472)
[9] Yan M C, Sun C, Xu J, et al.Anoxic corrosion behavior of pipeline steel in acidic soils[J]. Ind. Eng. Chem. Res., 2014, 53: 17615
[10] Chen X, Du C W, Li X G.Influences of soil water content on corrosion behavior of X70 steel in Yingtan acidic soil[J]. J. Petrochem. Univ., 2007, 20(4): 55(陈旭, 杜翠薇, 李晓刚. 含水率对X70钢在鹰潭酸性土壤中腐蚀行为的影响[J]. 石油化工高等学校学报, 2007, 20(4): 55)
[11] Xu R K, Zhao A Z, Li Q M, et al.Acidity regime of the red soils in a subtropical region of southern China under field conditions[J]. Geoderma, 2003, 115: 75
[12] Yan M C, Sun C, Xu J, et al.Role of Fe oxides in corrosion of pipeline steel in a red clay soil[J]. Corros. Sci., 2014, 80: 309
[13] Cao C N.Material Corrosion in Natural Environment of China[M]. Beijing: Chemical Industry Press, 2005(曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005)
[14] He J L, Long G, Huang Y, et al.Spatial and Temporal Distribution Law of Acid rain in Jiangxi Province [M]. Beijing: China Environmental Science Press, 1998(何纪力, 龙刚, 黄云等. 江西省酸雨时空分布规律研究 [M]. 北京: 中国环境科学出版社, 1998)
[15] Wu Y H, Liu T M, Sun C, et al.Effects of simulated acid rain on corrosion behaviour of Q235 steel in acidic soil[J]. Corros. Eng. Sci. Technol., 2010, 45: 136
[16] Li Y Q, Sun C, Yu C K, et al.Influence of simulated sulfate type acid rain on corrosion behavior of X70 steel in acidic soil[J]. Corros. Sci. Prot. Technol., 2008, 20: 105(李永强, 孙成, 于长坤等. 模拟硫酸型酸雨对X70钢在酸性土壤中腐蚀行为的影响[J]. 腐蚀科学与防护技术, 2008, 20: 105)
[17] Yang S, Tang N, Yan M C, et al.Effect of temperature on corrosion behavior of X80 pipeline steel in acidic soil[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 227(杨霜, 唐囡, 闫茂成等. 温度对X80管线钢酸性红壤腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2015, 35: 227)
[18] Yan M C, Sun C, Dong J H, et al.Electrochemical investigation on steel corrosion in iron-rich clay[J]. Corros. Sci., 2015, 97: 62
[19] Yan M C, Sun C, Xu J, et al.Electrochemical behavior of API X80 steel in acidic soils from Southeast China[J]. Int. J. Electrochem. Sci., 2015, 10: 1762
[20] Li C, Du C W, Liu Z Y, et al.Characteristics of electrochemical impedance spectroscopy for X100 pipeline steel in water-saturated acidic soil[J]. J. Chin. Soc. Corros. Prot., 2011, 31: 377(李超, 杜翠薇, 刘智勇等. X100管线钢在水饱和酸性土壤中的电化学阻抗谱特征[J]. 中国腐蚀与防护学报, 2011, 31: 377)
[21] Cao C N, Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002(曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002)
[22] Eliyan F F, Mahdi E S, Alfantazi A.Electrochemical evaluation of the corrosion behaviour of API-X100 pipeline steel in aerated bicarbonate solutions[J]. Corros. Sci., 2012, 58: 181
[23] Wang S X, Liu D X, Du N, et al.Relationship between dissolved oxygen and corrosion characterization of X80 steel in acidic soil simulated solution[J]. Int. J. Electrochem. Sci., 2015, 10: 4393
[24] Glazov N N, Ukhlovtsev S M, Reformatskaya I I, et al.Corrosion of carbon steel in soils of varying moisture content[J]. Prot. Met., 2006, 42: 601
[25] Nguyen Dang D, Lanarde L, Jeannin M, et al.Influence of soil moisture on the residual corrosion rates of buried carbon steel structures under cathodic protection[J]. Electrochim. Acta, 2015, 176: 1410
[26] Meng G Z, Zhang C, Cheng Y F.Effects of corrosion product deposit on the subsequent cathodic and anodic reactions of X70 steel in near-neutral pH solution[J]. Corros. Sci., 2008, 50: 3116
[27] Du C W, Zhao T L, Liu Z Y, et al.Corrosion behavior and characteristics of the product film of API X100 steel in acidic simulated soil solution[J]. Int. J. Miner. Metall. Mater., 2016, 23: 176
[28] Thee C, Hao L, Dong J H, et al.Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet-dry condition[J]. Corros. Sci., 2014, 78: 130
[29] Dan Z H, Takigawa S, Muto I, et al.Applicability of constant dew point corrosion tests for evaluating atmospheric corrosion of aluminium alloys[J]. Corros. Sci., 2011, 53: 2006
[30] Dan Z H, Muto I, Hara N.Effects of environmental factors on atmospheric corrosion of aluminium and its alloys under constant dew point conditions[J]. Corros. Sci., 2012, 57: 22
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[5] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[6] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[7] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[8] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[9] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[10] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[11] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[12] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[13] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[14] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!