Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (1): 68-73    DOI: 10.11902/1005.4537.2017.003
研究报告 Current Issue | Archive | Adv Search |
Cellular Automata Simulation of Corrosion Process for Steel
Mengcheng CHEN(), Qingqing WEN
School of Civil Engineering and Architecture, East China Jiao-tong University, Nanchang 330013, China
Download:  HTML  PDF(2544KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Cellular automata method was adopted to simulate the corrosion damage behavior of steel. According to the results of experimental study on steel in corrosive environments and the principle of cellular automata method, a local evolution rule of cellular automata was defined, and then the evolution process of corrosion morphology for a pit were simulated. By comparing the simulation results for different initial concentrations c and dissolution probability p, the real simulation condition for the corrosion pit was determined. At the same time, the influence of different initial solution concentration c and dissolution probability p on the morphology was discussed. It was shown that with the increasing initial concentration c and dissolution probability p, the equivalent radius or depth of corrosion pit presents an approximate power function of etching time t. Meanwhile, the simulation results of pit depth were compared with the theoretical prediction proposed by Komp, which showed that both results are agreeable and the proposed CA model is feasible and efficient.

Key words:  steel      corrosion      pit morphology      cellular automata      simulation     
Received:  06 January 2017     
ZTFLH:  TU503  
Fund: Supported by National Natural Science Foundation of China (51378206 and 51468017)

Cite this article: 

Mengcheng CHEN, Qingqing WEN. Cellular Automata Simulation of Corrosion Process for Steel. Journal of Chinese Society for Corrosion and protection, 2018, 38(1): 68-73.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.003     OR     https://www.jcscp.org/EN/Y2018/V38/I1/68

Fig.1  Initial CA model of pit: (a) transverse CA model, (b) longitudinal CA model (O: solution cell, M: metal cell)
Fig.2  Evolution relationship between the central cell and neighbor cells
Fig.3  Morphologies of pits on the surface of Q235 steel after immersion in simulated acid rain solution at 40 ℃ for 10 d (a), 20 d (b) and 30 d (c)
Fig.4  Surface morphologies evolution of pit: (a) t =200; (b) t =400; (c) t =600; (d) t =800; (e) t =1000; (f) t =1200 (t is dimensionless, the dark areas indicate metal cells, the white parts indicate solution cells)
Fig.5  Morphology evolutions of pit in depth: (a) t =200; (b) t =400; (c) t =600; (d) t =800; (e) t =1000; (f) t =1200
Fig.6  Effect of dissolution probability on equivalent radius
Fig.7  Effect of initial solution concentration on equivalent radius
Fig.8  Effect of dissolution probability on equivalent depth
Fig.9  Effect of initial solution concentration on equivalent depth
Fig.10  Fitting curve under different solution concentration(p=0.7)
Fig.11  Fitting curve under different dissolution probability(c=0.5)
c p A B R-square
0.3 0.7 0.0941 1.0200 0.9984
0.4 0.7 0.0950 1.0370 0.9992
0.5 0.7 0.1490 1.0080 0.9996
0.6 0.7 0.1010 1.0820 0.9993
0.7 0.7 0.2524 0.9683 0.9993
0.5 0.3 0.0536 1.0120 0.9976
0.5 0.4 0.1516 0.9167 0.9975
0.5 0.5 0.0789 1.0480 0.9980
0.5 0.6 0.0823 1.0630 0.9996
0.5 0.7 0.1490 1.00800 0.9996
Table 1  Fitting values of various parameters
[1] Liu D X.Corrosion and Protection of Material [M]. Xi'an: Northwestern Polytechnical University Press, 2006: 20(刘道新. 材料的腐蚀与防护 [M]. 西安: 西北工业大学出版社, 2006: 20)
[2] Jiang Q.The random token method of corroded steel structure surface rust pit studies [D]. Xi'an: Xi'an University of Architecture and Technology, 2011(蒋庆. 锈蚀钢结构表面锈坑的随机表征方法研究 [D]. 西安: 西安建筑科技大学, 2011)
[3] Wang Z Y, Yu Q C, Chen J J, et al.Atmospheric corrosion behavior of P265GH steel and Q235 steel under dry/humid/immersion alternative condition[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 53(王振尧, 于全成, 陈军君等. 周期干湿浸条件下P265GH钢和Q235钢的大气腐蚀行为[J]. 中国腐蚀与防护学报, 2014, 34: 53)
[4] Han X B, Gao Z M, Dang L H, et al.Wavelet packet analysis of early corrosion image of Q235 steel in simulated atmospheric environment[J]. J. Chin. Soc. Corros. Prot., 2013, 33: 211(韩夏冰, 高志明, 党丽华等. Q235钢在模拟大气环境中早期腐蚀图像小波包分析[J]. 中国腐蚀与防护学报, 2013, 33: 211)
[5] Rusyn B P, Tors'ka R V, Pokhmurs'Kyi A Y. Modeling of the evolution of corrosion pitting with the use of cellular automata[J]. Mater. Sci., 2015, 50: 706
[6] Rusyn B, Tors'ka R, Kobasyar M.Application of the cellular automata for obtaining pitting images during simulation process of theirgrowth [A].Gruca D, Czachórski T, Kozielski S. Advances in Intelligent Systems and Computingrowth [A]. Gruca D, Czachórski T, Kozielski S. Advances in Intelligent Systems and Computing[M]. Cham: Springer, 2014, 242
[7] Torska R, Rusyn B.Application the cellular automata method for modeling the growth of surfaces corrosion defects [A]. Proceeding 13th International Conference on Modern Problems of Radio Engineering, Telecommunications and Computer Science[C]. Lviv, Ukraine: IEEE, 2016: 145
[8] Malki B, Baroux B.Computer simulation of the corrosion pit growth[J]. Corros. Sci., 2005, 47: 171
[9] Wang H, Lv G Z, Wang L, et al.Cellular automaton simulations of surface corrosion damage evolution[J]. Acta Aeronaut. Astronaut. Sin., 2008, 29: 1490(王慧, 吕国志, 王乐等. 金属表面腐蚀损伤演化过程的元胞自动机模拟[J]. 航空学报, 2008, 29: 1490)
[10] Wang H, Lv G Z, Zhang Y H.Cellular automaton simulations of corrosion pit growth[J]. Corros. Sci. Prot. Technol., 2008, 20: 472(王慧, 吕国志, 张有宏. 蚀坑生长演化过程的元胞自动机模拟[J]. 腐蚀科学与防护技术, 2008, 20: 472)
[11] Li L, Li X G, Xiao K, et al.Cellular automata simulation on the early stages of metal corrosion in moist atmospheric environment[J]. J. Chin. Soc. Corros. Prot., 2010, 30: 114(李磊, 李晓刚, 肖葵等. 金属在湿大气环境下初期腐蚀行为的元胞自动机模拟[J]. 中国腐蚀与防护学报, 2010, 30: 114)
[12] Zhu Q.The corrosion of acid rain behind the recycled concrete filled steel tube column eccentric compression test and theory research [D]. Nanchang: East China Jiao-tong University, 2016(朱琪. 酸雨腐蚀后方钢管再生混凝土柱偏心受压试验与理论研究 [D]. 南昌: 华东交通大学, 2016)
[13] Pidaparti R M, Palakal M J, Fang L.Cellular automation approach to model aircraft corrosion pit damage growth[J]. AIAA J., 2004, 42: 2562
[14] Chopard B.Cellular Automata Modeling of Physical Systems[M]. New York: Springer, 1998: 865
[15] Toffoli T, Margolus N.Cellular Automata Machines: A New Environment for Modeling [M]. Cambridge: MIT Press, 1987
[16] Wang Y L, Cao M M, Sun H J.Time-dependent reliability analysis of circular CFST stub columns under environmental corrosion[J]. Pac. Sci. Rev., 2014, 16: 201
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[3] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[4] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[5] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[6] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[7] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[8] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[9] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[10] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[11] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[12] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[13] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[14] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[15] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
No Suggested Reading articles found!