Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (2): 168-174    DOI: 10.11902/1005.4537.2017.001
Orginal Article Current Issue | Archive | Adv Search |
Effect of Microstructure on Corrosion Behavior of X70 Steel in 3.5%NaCl Solution with SRB
Yu TENG,Xu CHEN(),Chuan HE,Yichuang WANG,Bing WANG
School of Petroleum Engineering, Liaoning Shihua University, Fushun 113001, China
Download:  HTML  PDF(3841KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

X70 steels with different microstructure were obtained by heat treating at 1050 ℃ for 3 h and subsequently air cooling, water cooling and furnace cooling respectively. Corrosion behavior of the X70 steels with different microstructure in 3.5%(mass fraction)NaCl solution with sulfate reducing bacteria (SRB) was studied by means of potentiodynamic polarization measurement and electrochemical impedance spectroscopy (EIS) as well as SEM and EDS. The results showed that the as received X70 steel shows a microstructure composed of ferrite and pearlite; the air cooling steel composed of globular pearlite distributed along the ferrite grain boundaries; furnace cooling steel composed of lamellar pearlite and proeutectoid ferrite and water cooling one composed mainly of lath martensite and a small amount of blocky ferrite. In the initial stage of corrosion in 3.5%NaCl solution with sulfate reducing bacteria (SRB), the test steels were all covered with a compact biofilm, which played a roll in protection to the substrate. However fractures occurred for the biofilms formed on the water cooling- and air cooling-steels after immersion for 8 and 10 d respectively, while the biofilms kept integrity on the furnace cooling- and as received-steels. The corrosion resistance of the furnace cooling- steel was best, and the water cooling-steel was worst in 3.5%NaCl solution with SRB.

Key words:  X70 steel      microstructure      sulfate reducing bacteria      electrochemical      corrosion     
Received:  03 January 2017     
Fund: Supported by National Natural Science Foundation of China (51201009) and Natural Science Foundation ofLiaoning Province (2013020078)

Cite this article: 

Yu TENG,Xu CHEN,Chuan HE,Yichuang WANG,Bing WANG. Effect of Microstructure on Corrosion Behavior of X70 Steel in 3.5%NaCl Solution with SRB. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 168-174.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2017.001     OR     https://www.jcscp.org/EN/Y2017/V37/I2/168

Fig.1  Microstructures of X70 steel before (a) and after heat treatments with air cooling (b), furnace cooling (c) and water cooling (d)
Fig.2  SEM images and corresponding EDS results of untreated (a) and air cooling (b), furnace cooling (c) and water cooling (d) heat treated X70 steel samples immersed for 14 d in 3.5%NaCl solution containing SRB
Fig.3  Open circle potentials of untreated and heat-treated X70 steel samples in 3.5%NaCl solution with SRB
Fig.4  Polarization curves of untreated and heat-treated X70steel samples in 3.5%NaCl solution with SRB
Heat condition Ecorr / V Icorr / μAcm2
Untreated -0.832 2.53
Furnace cooling -0.835 0.66
Water-cooling -0.828 4.68
Air-cooling -0.905 3.475
Table 1  Fitting parameters of polarization curves
Fig.5  Nyqusit (a) and Bode (b) plots of untreated and heat-treated X70 steel samples in 3.5%NaCl solution with SRB
Fig.6  Equivalent circuit for fitting EIS
Heat condition Rs / Ωcm2 Qf / Fcm-2 n1 Rf / Ωcm2 Qdl / Fcm-2 n2 Rct / Ωcm2
Untreated 6.74 9.74×10-4 0.92 3.11×104 2.5×10-3 1.00 1.11×104
Furnace-cooling 8.04 1.00×10-3 0.93 3.08×104 1.0×10-4 1.00 2.44×104
Water-cooling 10.03 1.99×10-3 0.93 1.02×104 4.8×10-4 0.74 3.48×102
Air-cooling 8.51 1.43×10-2 0.63 1.86×10 7.2×10-3 0.90 4.48×104
Table 2  Fitting results of EIS
[1] Du J B, Yin Y S, Teng S L, et al.Marine microbial corrosion research progress[J]. Shandong Metall., 2007, 29(S1): 1
[1] (杜建波, 尹衍生, 滕少磊等. 海洋微生物腐蚀研究进展[J]. 山东冶金, 2007, 29(S1): 1)
[2] Liu G Z, Wu J H.Advances in the study of microbiologically influenced corrosion in marine environment[J]. Corros. Prot., 2001, 22: 430
[2] (刘光洲, 吴建华. 海洋微生物腐蚀的研究进展[J]. 腐蚀与防护, 2001, 22: 430)
[3] Li X B, Wang J, Guo W M, et al.Effect of biofilm on the electrochemical passivity of stainless steel[J]. J. Chin. Soc. Corros. Prot., 2006, 26: 295
[3] (李相波, 王佳, 郭为民等. 微生物附着对不锈钢钝化性能的影响[J]. 中国腐蚀与防护学报, 2006, 26: 295)
[4] Li C L, Ma Y T, Li Y, et al.Corrosion mechanism of Mo/Nd16Fe71B13/Mo film in a simulated marine atmosphere[J]. Corros. Sci., 2011, 53: 2549
[5] Hao L, Zhan S X, Dong J H, et al.Atmospheric corrosion resistance of MnCuP weathering steel in simulated environments[J]. Corros. Sci., 2011, 53: 4187
[6] Mu X, Wei J, Dong J H, et al.Electrochemical study on corrosion behaviors of mild steel in a simulated tidal zone[J]. Acta Metall. Sin., 2012, 48: 420
[6] (穆鑫, 魏洁, 董俊华等. 低碳钢在模拟海洋潮差区的腐蚀行为的电化学研究[J]. 金属学报, 2012, 48: 420)
[7] ?rnek D, Jayaraman A, Wood T K, et al.Pitting corrosion control using regenerative biofilms on aluminium 2024 in artificial seawater[J]. Corros. Sci., 2001, 43: 2121
[8] Liu T, Zhang Y F, Chen X, et al.Effect of SRB on corrosion behavior of X70 steel in a simulated soil solution[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 112
[8] (刘彤, 张艳飞, 陈旭等. SRB对X70钢在土壤模拟溶液中腐蚀行为的影响[J]. 中国腐蚀与防护学报, 2014, 34: 112)
[9] Du C W, Liu Z Y, Liang P, et al.Short-term corrosion behavior of X70 pipeline steel with different microstructure in Ku'erle soil with saturated water[J]. Heat Treat. Met., 2008, 33(6): 80
[9] (杜翠薇, 刘智勇, 梁平等. 不同组织X70钢在库尔勒含饱和水土壤中的短期腐蚀行为[J]. 金属热处理, 2008, 33(6): 80)
[10] Zhai G L, Liu Z Y, Du C W, et al.Stress corrosion cracking of X70 steel with different microstructures in acid soil simulation solution[J]. Corros. Prot., 2009, 30: 149
[10] (翟国丽, 刘智勇, 杜翠薇等. 不同组织X70钢在酸性土壤模拟溶液中的应力腐蚀敏感性[J]. 腐蚀与防护, 2009, 30: 149)
[11] Zhao Y L, Liu W, Lu M X.Effect of soaking time on SRB electrochemical corrosion behavior of X60 steel[J]. Equip. Environ. Eng., 2007, 4(3): 53
[11] (赵艳亮, 柳伟, 路民旭. 浸泡时间对X60钢SRB电化学腐蚀行为影响研究[J]. 装备环境工程, 2007, 4(3): 53)
[12] Song B Q, Chen X, Ma G Y, et al.Effect of SRB on SCC behaviour of X70 pipeline steel and its weld joint in near-neutral pH solution[J]. Trans. Mater. Heat Treat., 2016, 37(4): 122
[12] (宋博强, 陈旭, 马贵阳等. SRB对X70钢及其焊缝在近中性pH溶液中SCC行为的影响[J]. 材料热处理学报, 2016, 37(4): 122)
[13] Liu X B, Xi G D, Yu D L, et al.Corrosion behavior of X60 pipeline steel in diesel oil[J]. Mater. Prot., 2016, 49(6): 60
[13] (刘贤斌, 冼国栋, 余东亮等. X60管线钢在柴油中的腐蚀行为[J]. 材料保护, 2016, 49(6): 60)
[14] Zhang D L, Wang W, Li Y.An electrode array study of electrochemical inhomogeneity of zinc in zinc/steel couple during galvanic corrosion[J]. Corros. Sci., 2010, 52: 1277
[15] Zheng Y Y, Zou Y, Wang J.Research progress on corrosion of carbon steels under rust layer in marine environment[J]. Corros. Sci. Prot. Technol., 2011, 23: 93
[15] (郑莹莹, 邹妍, 王佳. 海洋环境中锈层下碳钢腐蚀行为的研究进展明[J]. 腐蚀科学与防护技术, 2011, 23: 93)
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[5] DAI Ting, GU Yanhong, GAO Hui, LIU Kailong, XIE Xiaohui, JIAO Xiangdong. Electrochemical Performance of Underwater Friction Stud Welding Joint in CO2 Saturated NaCl Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 87-95.
[6] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[7] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[8] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[9] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[10] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[11] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[12] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[13] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[14] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[15] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
No Suggested Reading articles found!