Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (1): 26-32    DOI: 10.11902/1005.4537.2016.242
Orginal Article Current Issue | Archive | Adv Search |
Characteristics on Electrochemical Noise of Pitting Corrosion for High Nitrogen Austenitic Stainless Steels
Pengliang AN1, Ping LIANG1(), Jianmin REN1, Yanhua SHI1, Feng LIU1, Siyao CHEN2
1 School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China
2 North Hua Jin Chemical Industries Group Corporation, Panjin 124021, China
Download:  HTML  PDF(972KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The pitting corrosion behavior of high nitrogen stainless steel (HNSS) and 316L stainless steel (316L SS) in 6%(mass fraction) FeCl3 solution was compared by time domain, frequency domain spectrum and Weibull distribution analysis of electrochemical noise (EN) data. The time domain analysis results show that after immersion in the solution of 6%FeCl3 for 5 h, the noise transient peaks appear on the measured potential noise and current noise of 316L SS, implying the occurrence of metastable pitting, however, at the same time, the noise transient peak does not appear on the EN plot of HNSS, while the potential noise and current noise only presented a slight high-frequency fluctuations, indicating the surface passivation film suffered from slightly attack, while presented ability of repassivation to certain extent. Moreover, the noise resistance fluctuation amplitude of 316L SS is larger than that of HNSS, which suggesting the ability in self-passivation and re-healing of the passivation film of HNSS is better than that of 316L SS. Plots of power spectral density show that the values of slope of high frequency and plateau intensity of white noise of 316L SS are larger than those of HNSS, and the relevant Weibull distribution analysis reveals that the rate of pitting inoculation for 316L SS is twice of that for HNSS, which predicating that the 316L SS is much prone to pitting than HNSS.

Key words:  high nitrogen stainless steel      electrochemical noise      power spectral density     
Received:  22 December 2016     
ZTFLH:  TG174.3  
Fund: Supported by National Natural Science Foundation of China (51175240)

Cite this article: 

Pengliang AN, Ping LIANG, Jianmin REN, Yanhua SHI, Feng LIU, Siyao CHEN. Characteristics on Electrochemical Noise of Pitting Corrosion for High Nitrogen Austenitic Stainless Steels. Journal of Chinese Society for Corrosion and protection, 2018, 38(1): 26-32.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.242     OR     https://www.jcscp.org/EN/Y2018/V38/I1/26

Fig.1  Electrochemical noise signals of HNSS (a) and 316L SS (b) immersed in 6%FeCl3 solution for 0 h
Fig.2  Electrochemical noise signals of HNSS (a) and 316L SS (b) after immersion in 6%FeCl3 solution for 5 h
Fig.3  Electrochemical noise signals of HNSS (a) and 316L SS (b) after immersion in 6%FeCl3 solution for 48 h
Fig.4  1/Rn vs time plots of HNSS and 316L SS in 6%FeCl3 solution
Fig.5  PSD plots of HNSS and 316L SS after immersion in 6%FeCl3 solution for 0 h (a), 48 h (b), 100 h (c) and 168 h (d)
Steel 0 h 48 h 100 h 168 h
K / dBdec-1 W / A2Hz-1 K / dBdec-1 W / A2Hz-1 K / dBdec-1 W / A2Hz-1 K / dBdec-1 W / A2Hz-1
HNSS -0.3130 -12.0635 -1.3835 -9.1691 -1.7512 -7.4519 -2.0723 -8.0635
316L SS -2.2858 -21.3313 -1.6414 -15.6730 -2.0813 -15.7965 -2.1613 -14.5087
Table 1  PSD parameters of HNSS and 316L SS
Fig.6  Cumulative probability plots of corrosion events for HNSS and 316L SS
Fig.7  Weibull plots of shot noises for HNSS and 316L SS
Steel m k
HNSS 0.4145 10.8545
316L SS 0.5455 8.2502
Table 2  Weibull function parameters of shot noises forHNSS and 316L SS
Fig.8  Variatios of pitting corrosion rate of HNSS and 316L SS with time
[1] Yang K, Ren Y B, Wan P.High nitrogen nickel-free austenitic stainless steel: A promising coronary stent material[J]. Sci. China Tech. Sci., 2012, 55: 329
[2] Sun M, Luo M, Lu C, et al.Effect of alloying tin on the corrosion characteristics of austenitic stainless steel in sulfuric acid and sodium chloride solutions[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 1089
[3] Poonguzhali A, Pujar M G, Mudali U K.Effect of nitrogen and sensitization on the microstructure and pitting corrosion behavior of AISI type 316LN stainless steels[J]. J. Mater. Eng. Perform., 2013, 22: 1170
[4] Cisneros M M, Valdés E, Vázquez D, et al.Development of austenitic nanostructures in high-nitrogen steel powders processed by mechanical alloying[J]. Metall. Mater. Trans., 2002, 33A: 2139
[5] Xiang H L, Huang W L, Liu D, et al.XPS analysis of corrosion product scale on surface of 29Cr super duplex stainless cast steel[J]. Corros. Sci. Prot. Technol., 2011, 23: 303(向红亮, 黄伟林, 刘东等. 29Cr超级双相不锈铸钢表面腐蚀XPS分析[J]. 腐蚀科学与防护技术, 2011, 23: 303)
[6] Lothongkum G, Wongpanya P, Morito S, et al.Effect of nitrogen on corrosion behavior of 28Cr-7Ni duplex and microduplex stainless steels in air-saturated 3.5 wt% NaCl solution[J]. Corros. Sci., 2006, 48: 137
[7] Qiao Y X, Liu F H, Ren A, et al.Erosion-corrosion behavior of high nitrogen stainless steel and commerical 321 stainless steel[J]. J. Chin. Soc. Corros. Prot., 2012, 32: 141(乔岩欣, 刘飞华, 任爱等. 高氮钢和321不锈钢的冲刷腐蚀行为[J]. 中国腐蚀与防护学报, 2012, 32: 141)
[8] Chao K L, Liao H Y, Shyue J J, et al.Corrosion behavior of high nitrogen nickel-free Fe-16Cr-Mn-Mo-N stainless steels[J]. Metall. Mater. Trans., 2014, 45B: 381
[9] Zhang T, Yang Y G, Shao Y W, et al.Advances of the analysis methodology for electrochemical noise[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 1(张涛, 杨延格, 邵亚薇等. 电化学噪声分析方法的研究进展[J]. 中国腐蚀与防护学报, 2014, 34: 1)
[10] Ehsani A, Shiri H M, Mahjani M G, et al.Theoretical, common electrochemical and electrochemical noise investigation of inhibitory effect of new organic compound nanoparticles in the corrosion of stainless steel in acidic solution[J]. Trans. Indian Inst. Met., 2016, 69: 1519
[11] Li J, Zheng H J, Zheng Y, et al.A new information method to determinate corrosion types from electrochemical noise[J]. Acta Metall. Sin.(Engl. Lett.), 2015, 28: 449
[12] Pujar M G, Mudali U K, Singh S S.Electrochemical noise studies of the effect of nitrogen on pitting corrosion resistance of high nitrogen austenitic stainless steels[J]. Corros. Sci., 2011, 53: 4178
[13] Chen C M, Zhang T, Shao Y W, et al.Electrochemical noise analysis for corrosion of AZ91D magnesium alloy in alkaline chloride medium[J]. Corros. Sci. Prot. Technol., 2009, 21: 15(陈崇木, 张涛, 邵亚薇等. AZ91D镁合金在NaCl溶液中腐蚀过程的电化学噪声分析[J]. 腐蚀科学与防护技术, 2009, 21: 15)
[14] Li J, Zhao L, Li B W, et al.Electrochemical noise analysis of 304 stainless steel pitting corrosion in ferric chloride solution[J]. J. Chin. Soc. Corros. Prot., 2012, 32: 235(李季, 赵林, 李博文等. 304不锈钢点蚀的电化学噪声特征[J]. 中国腐蚀与防护学报, 2012, 32: 235)
[15] Toppo A, Pujar M G, Mallika C, et al.Effect of nitrogen on stress corrosion behavior of austenitic stainless steels using electrochemical noise technique[J]. J. Mater. Eng. Perform., 2015, 24: 1140
[16] Bihade M S, Patil A P, Khobragade N K.Analysis of electrochemical current noise from metastable pitting of SS304L in NaCl solutions[J]. Trans. Indian Inst. Met., 2013, 66: 155
[17] Kim J J.Electrochemical noise analysis of localized corrosion by wavelet transform[J]. Met. Mater. Int., 2010, 16: 747
[18] Suresh G, Mudali U K.Electrochemical noise analysis of pitting corrosion of type 304L stainless steel[J]. Corrosion, 2014, 70: 283
[19] Sanchez-Amaya J M, Cottis R A, Botana F J. Shot noise and statistical parameters for the estimation of corrosion mechanisms[J]. Corros. Sci., 2005, 47: 3280
[20] Jiang R Y.Family of Weibull Models: Properties, Parameter Estimation and Applications [M]. Beijing: Science Press, 1998(蒋仁言. 威布尔模型族: 特性、参数估计和应用 [M]. 北京: 科学出版社, 1998)
[21] Na K H, Pyun S I, Kim H P.Analysis of electrochemical noise obtained from pure aluminium in neutral chloride and alkaline solutions[J]. Corros. Sci., 2007, 49: 220
[22] Na K H, Pyun S I.Comparison of susceptibility to pitting corrosion of AA2024-T4, AA7075-T651 and AA7475-T761 aluminium alloys in neutral chloride solutions using electrochemical noise analysis[J]. Corros. Sci., 2008, 50: 248
[23] Santamaria M, Franco F D, Di Quarto F, et al.Photoelectrochemical and XPS characterisation of oxide layers on 316L stainless steel grown in high-temperature water[J]. J. Solid State Electrochem., 2015, 19: 3511
[24] Rao V S, Singhal L K.Corrosion behavior and passive film chemistry of 216L stainless steel in sulphuric acid[J]. J. Mater. Sci., 2009, 44: 2327
[25] Cheng X Q, Li X G, Du C W.Properties of passive film formed on 316L/2205 stainless steel by Mott-Schottky theory and constant current polarization method[J]. Chin. Sci. Bull., 2009, 54: 2239(程学群, 李晓刚, 杜翠薇. 316L和2205不锈钢在醋酸溶液中钝化膜的生长及其半导体属性的研究[J]. 科学通报, 2009, 54: 104)
[26] Wu X Q, Fu Y, Huang J B, et al.Investigation on pitting corrosion of nickel-free and manganese-alloyed high-nitrogen stainless steels[J]. J. Mater. Eng. Perform., 2009, 18: 287
[27] Kamachi Mudali U, Bedivere R.Translated by Li J, Huang Y H. High Nitrogen Steels and Stainless Steels: Manufacturing, Properties and Applications [M]. Beijing: Chemical Industry Press, 2006(Kamachi Mudali U,Bedivere R著. 李晶, 黄运华译. 高氮钢和不锈钢: 生产、性能与应用 [M]. 北京: 化学工业出版社, 2006)
[1] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[2] Jiejing CHEN,Hong JU,Can SUN,Xia LI,Yunfei LIU. Application of Electrochemical Testing Technology for Corrosion Under-deposits[J]. 中国腐蚀与防护学报, 2017, 37(3): 207-215.
[3] Xinqiang WU,Yao FU,Wei KE,Song XU,Bing FENG,Botao HU,Jiazheng LU. Corrosion Behavior of High Nitrogen Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2016, 36(3): 197-204.
[4] LIU Shiqiang, WANG Lida, ZONG Qiufeng, ZHANG Cheng, LIU Guichang. Electrochemical Noise Analysis of Local Pitting Corrosion Behavior of Pure Aluminum[J]. 中国腐蚀与防护学报, 2014, 34(2): 160-164.
[5] SHI Wei, DONG Zehua, GUO Xingpeng. Analysis of Electrochemical Noise by Hilbert-Huang Transform and Its Application[J]. 中国腐蚀与防护学报, 2014, 34(2): 138-146.
[6] ZHANG Tao,,YANG Yange,SHAO Yawei,,MENG Guozhe,,WANG Fuhui,. Advances of the Analysis Methodology for Electrochemical Noise[J]. 中国腐蚀与防护学报, 2014, 34(1): 1-18.
[7] YUAN Wei,HUANG Feng,HU Qian,LIU Jing,HOU Zhenyu. Influences of Applied Tensile Stress on the Pitting Electrochemical Behavior of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2013, 33(4): 277-282.
[8] CHANG Anle, SONG Shizhe. A PRELIMINARY ON CORROSION MONITORING AND DETECTING OF METAL STRUCTURE IN SIMULATED SEA SPLASH ZONE[J]. 中国腐蚀与防护学报, 2012, 32(3): 247-250.
[9] LI Ji, ZHAO Lin, LI Bowen,ZHENG Liqun, HAN En-Hou. ELECTROCHEMICAL NOISE ANALYSIS OF 304 STAINLESS STEEL PITTING CORROSION IN FERRIC CHLORIDE SOLUTION[J]. 中国腐蚀与防护学报, 2012, 32(3): 235-240.
[10] QIAO Yanxin, LIU Feihua, REN Ai, JIANG Shengli, ZHENG Yugui. EROSION-CORROSION BEHAVIOR OF HIGH NITROGEN STAINLESS STEEL AND COMMERICAL 321 STAINLESS STEEL[J]. 中国腐蚀与防护学报, 2012, 32(2): 141-145.
[11] SHI Qiumei, SHAO Yawei, ZHANG Tao, MENG Guozhe, CHEN Qihao. PROTECTION DIMENSION OF SCRATCHED ZINC PHOSPHATE/EPOXY COATING[J]. 中国腐蚀与防护学报, 2011, 31(5): 389-394.
[12] WENG Yongji LI Weifeng LI Xiangyi. COMPARISON OF CRITICAL PITTING TEMPERATURES FOR OIL INDUSTRY STEELS USING ELECTROCHEMICAL NOISE[J]. 中国腐蚀与防护学报, 2009, 29(6): 421-425.
[13] HUANG Jiayi QIU Yubing GUO Xingpeng. CLUSTER ANALYSIS OF ELECTROCHEMICAL NOISE FOR X70 STEEL IN KU'ERLE SOIL[J]. 中国腐蚀与防护学报, 2009, 29(6): 453-458.
[14] HAN Lei SONG Shizhe ZHANG Zheng. APPLYING ELECTROCHEMICAL NOISE TECHNIQUE TO DETECT THE ATMOSPHERIC CORROSION OF ALUMINUM ALLOY[J]. 中国腐蚀与防护学报, 2009, 29(6): 471-474.
[15] HUANG Jiayi QIU Yubing GUO Xingpeng. TREND REMOVAL IN THE ANALYSIS OF ELECTROCHEMICAL NOISE BY POLYNOMIAL FITTING WITH WINDOW TECHNIQUE[J]. 中国腐蚀与防护学报, 2009, 29(1): 9-14.
No Suggested Reading articles found!