Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (6): 567-574    DOI: 10.11902/1005.4537.2016.221
Current Issue | Archive | Adv Search |
Corrosion Electrochemical Behavior Beneath Thin Electrolyte Layer of Potassium Formate Solution of Cd-plated 4130 Steel Used for Aircraft Landing Gear
Xiuzhou LIN1,2(), Li YANG2, Yongjun MEI3, Xingwen ZHENG1, Shuwen LUO3, Xuejun CUI1,2
1 Materials Corrosion and Protection Key Laboratory of Sichuan Province, Sichuan University of Science & Engineering, Zigong 643000, China
2 School of Materials Science and Engineering, Sichuan University of Science & Engineering,Zigong 643000, China
3 The Second Research Institute of CAAC, Chengdu 610041, China
Download:  HTML  PDF(2762KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The Cd-plated AISI 4130 steel is being widely used for aircraft landing gear and potassium formate is the main composition of the common deicing fluid. Therefore, it is worthy to investigate the corrosion electrochemical behavior of Cd plated AISI 4130 steel beneath thin electrolyte layer of potassium formate solution at low temperature. Results showed that the corrosion process of the Cd-plated AISI 4130 steel in potassium formate solution is mainly controlled by the diffusion of dissolved oxygen, and influenced by the deposition of corrosion product beneath the thin electrolyte layer. When the thickness of the electrolyte layer is higher (240 μm or more), there is little influence of the thickness of the electrolyte layer on the cathodic limited diffusion current density and solution resistance. When the thickness of the electrolyte layer is thinner, the cathodic limited diffusion current density and solution resistance are increased with the decrease of the thickness of the electrolyte layer. For the same thickness of the electrolyte layer, the corrosion potential of the Cd-plated AISI 4130 steel decreases with the increase of solution concentration. For the dilute solutions, the corrosion rate of the Cd-plated AISI 4130 steel is lower, and the corrosion potential and corrosion rate are less affected by the thickness of the electrolyte layer. When the concentration of potassium formate solution is higher, the corrosion potential of the Cd-plated AISI 4130 steel is positively shifted with the decrease of the thickness of the electrolyte layer. The corrosion rate of the Cd-plated AISI 4130 steel beneath thin electrolyte layer is obviously higher than that of full immersion test, and the corrosion rate for the former case increased first and then decreased with the decreasing thickness of the electrolyte layer, and reached the maximum value when the thickness of the electrolyte layer is about 150 μm.

Key words:  AISI 4130 steel plated by cadmium      potassium formate solution      deicing fluid      thin electrolyte laye      corrosion electrochemistry     
Received:  21 November 2016     
ZTFLH:  TG172  
Fund: Supported by National Natural Science Foundation of China (U1333103 and U1633118), Foundation of Youth Science and Technology Innovation Team of Sichuan Province (2016TD0024) and Talent Introduction Funds of the Sichuan University of Science and Engineering (2016RCL12)

Cite this article: 

Xiuzhou LIN, Li YANG, Yongjun MEI, Xingwen ZHENG, Shuwen LUO, Xuejun CUI. Corrosion Electrochemical Behavior Beneath Thin Electrolyte Layer of Potassium Formate Solution of Cd-plated 4130 Steel Used for Aircraft Landing Gear. Journal of Chinese Society for Corrosion and protection, 2017, 37(6): 567-574.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.221     OR     https://www.jcscp.org/EN/Y2017/V37/I6/567

Fig.1  Schematic drawing of the corrosion test apparatus beneath thin electrolyte layer
Fig.2  Cathodic polarization curves of cadmium-plated AISI 4130 steel beneath different thickness thin liquid layers of 25% potassium formate solution
Fig.3  Surface topographies of cadmium-plated AISI 4130 steel before (a) and after (b) the test
Fig.4  EDS analysis results of the surface of the sample after the test
Fig.5  Variations of corrosion potential (a) and limited diffusion current density (b) of cadmium-plated AISI 4130 steel with the concentration of potassium formate solution
Fig.6  Variations of corrosion potential (a) and limited diffusion current density (b) of cadmium-plated AISI 4130 steel with the thickness of the thin electrolyte layer
Fig.7  Nyquist (a) and impedance module (b) and phase angle (c) plots of cadmium-plated AISI 4130 steel beneath different thickness thin electrolyte layers of 25% potassium formate solution
Fig.8  Equivalent circuit model of the corrosion system
Concentration of potassium formate Thickness of layer / μm RsΩcm2 RtΩcm2
5% 30 245.3 1002.0
90 106.1 833.9
150 86.6 1101.2
240 33.4 934.3
500 13.1 945.7
10000 11.0 1172.0
10% 30 177.6 976.7
90 89.5 1069.6
150 65.6 895.7
240 35.1 980.3
500 10.1 835.4
10000 9.3 831.0
25% 30 71.6 852.7
90 67.7 905.6
150 35.0 1003.0
240 27.4 716.0
500 19.0 801.5
10000 5.3 867.5
50% 30 53.5 535.2
90 43.7 486.3
150 20.6 310.5
240 19.7 453.9
500 6.5 631.4
10000 3.5 747.0
100% 30 41.2 414.3
90 39.6 357.4
150 27.6 335.8
240 18.3 491.5
500 8.6 568.0
10000 2.4 669.9
Table 1  Fitting values of EIS for the corrosion system
Fig.9  Variations of solution resistance with the thickness of the thin electrolyte layer
Fig.10  Variations of 1/Rt with the thickness of the thin electrolyte layer
[1] Liu T Q.Material development used for aircraft landing gear [A]. Academic Conference of Chinese Society of Aeronautics and Astronautics[C]. Shenzhen, 2007(刘天琦. 飞机起落架用材发展 [A]. 大型飞机关键技术高层论坛暨中国航空学会2007年学术年会论文集[C]. 深圳, 2007
[2] Klein-Paste A, Huseby A B, Anderson J D, et al. Braking performance of commercial airplanes during operation on winter contaminated runways [J]. Cold Reg. Sci. Technol., 2012, 79/80: 29
[3] Security Division of Airport Department, CAAC. Field maintenance manual for the airfield field in civil airport [Z]. 2000(中国民用航空总局机场司安全保障处. 民用机场飞行区场地维护手册 [Z]. 2000)
[4] Harrigan E T.Research Results Digest 9 - Alternative aircraft and pavement deicers and anti-icing formulations with improved environmental characteristics [R]. Washington, DC: Transportation research board of the national academies, 2010
[5] Peng H Q, Xia Z X, Su Z L.Airworthiness certification of civil aero-chemicals in China[J]. Procedia Eng., 2011, 17(5): 633
[6] SAE AMS 1435-2010. Fluid, generic, deicing/anti-icing runways and taxiways AMS 1435-2010. Fluid, generic, deicing/anti-icing runways and taxiways[S]. 2010
[7] SAE AMS1431-2012. Compound, solid runway and taxiway deicing/anti-icing[S]
[8] GBT 25356-2010 Airport pavement deicing anti-icing fluid [S]BT 25356-2010 Airport pavement deicing anti-icing fluid [S]. Beijing: China Standard Press, 2010(GBT 25356-2010 机场道面除冰防冰液 [S]BT 25356-2010 机场道面除冰防冰液 [S]. 北京: 中国标准出版社, 2010)
[9] ASTM F 1111-08b(Reapproved 2013). Standard test method for corrosion of low-embrittling cadmium plate by aircraft maintenance chemicals F 1111-08b(Reapproved 2013). Standard test method for corrosion of low-embrittling cadmium plate by aircraft maintenance chemicals[S]. 2013
[10] MHT 6088-2012 Standard test method for corrosion of low-embrittling cadmium plate by aircraft maintenace chemicals [S]HT 6088-2012 Standard test method for corrosion of low-embrittling cadmium plate by aircraft maintenace chemicals [S]. Beijing: China Standard Press, 2012(MHT 6088-2012 飞机维护用化学品对低氢脆镀镉钢板腐蚀的试验方法 [S]HT 6088-2012 飞机维护用化学品对低氢脆镀镉钢板腐蚀的试验方法 [S]. 北京: 中国标准出版社, 2012)
[11] Huttunen-Saarivirta E, Kuokkala V T, Kokkonen J, et al.Corrosion effects of runway de-icing chemicals on aircraft alloys and coatings[J]. Mater. Chem. Phys., 2011, 126: 138
[12] Friedman P L, Shi X M.Assessing the impact of pavement de-icing products on aircraft and airfield infrastructure[J]. Airport Manage., 2009, 3(3): 223
[13] Lin X Z, Li Y, Mei Y J, et al.Research progress of corrosion of cadmium plated layer on aircraft caused by airfield pavement deicing fluid[J]. J. Sichuan Univ. Sci. Eng.(Nat. Sci. Ed.), 2014, 27(4): 1(林修洲, 李月, 梅拥军等. 机场道面除冰液对飞机镀镉层腐蚀的研究现状与进展[J]. 四川理工学院学报(自然科学版), 2014, 27(4): 1)
[14] Nishikata A, Ichihara Y, Hayashi Y, et al.Influence of electrolyte layer thickness and pH on the initial stage of the atmospheric corrosion of Iron[J]. J. Electrochem. Soc., 1997, 144: 1244
[15] Reminta E, Sutter E, Tribollet B, et al.A thin layer cell adapted for corrosion studies in confined aqueous environments[J]. Electrochim. Acta, 2007, 52: 715
[16] Simillion H, Van Der Steen N, Terryn H, et al. Geometry influence on corrosion in dynamic thin film electrolytes[J]. Electrochim. Acta, 2016, 209: 149
[17] Liu W J, Cao F H, Chen A N, et al.Corrosion behaviour of AM60 magnesium alloys containing Ce or La under thin electrolyte layers. Part 1: Microstructural characterization and electrochemical behavior[J]. Corros. Sci., 2010, 52: 627
[18] Liao X N, Cao F H, Zheng L Y, et al.Corrosion behaviour of copper under chloride-containing thin electrolyte layer[J]. Corros. Sci., 2011, 53: 3289
[19] Zhong X K, Zhang G A, Qiu Y B, et al.The corrosion of tin under thin electrolyte layers containing chloride[J]. Corros. Sci., 2013, 66: 14
[20] Huang H L, Pan Z Q, Guo X P, et al.Effects of direct current electric field on corrosion behaviour of copper, Cl- ion migration behaviour and dendrites growth under thin electrolyte layer[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 285
[21] Ding K K, Li X G, Xiao K, et al.Electrochemical migration behavior and mechanism of PCB-ImAg and PCB-HASL under adsorbed thin liquid films[J]. Trans. Nonferrous Met. Soc. China, 2015, 25: 2446
[22] Yi P, Xiao K, Ding K K, et al.In situ investigation of atmospheric corrosion behavior of PCB-ENIG under adsorbed thin electrolyte layer[J]. Trans. Nonferrous Met. Soc. China, 2016, 26: 1146
[23] Liu Z J, Wang W, Wang J, et al.Study of corrosion behavior of carbon steel under seawater film using the wire beam electrode method[J]. Corros. Sci., 2014, 80: 523
[24] Thee C, Hao L, Dong J H, et al.Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet-dry condition[J]. Corros. Sci., 2014, 78: 130
[25] Tang Z L, Li C, Li H.Corrosion rate of carbon steel under liquid layer containing Cl- and its correlation with environment control factors[J]. J. Chin. Soc. Corros. Prot., 2010, 30: 67(唐子龙, 李超, 李辉. NaCl液膜下碳钢腐蚀速率及其与环境因素的关联性[J]. 中国腐蚀与防护学报, 2010, 30: 67)
[26] Lin X Z, Yang L, Du Y, et al. A kind of corrosion test device which can automatically control the thickness of the thin electrolyte layer [P]. Chinese patent: ZL 201520578261.1, 2016-01-20(林修洲, 杨丽, 杜勇等. 一种可自动控制液膜厚度的薄液膜腐蚀试验装置 [P]. 中国专利: ZL 201520578261.1, 2016-01-20)
[27] Yang L, Lin X Z, Mei Y J, et al.Corrosion behaviors of carbon steel under 3.5% NaCl thin liquid film[J]. J. Sichuan Univ. Sci. Eng.(Nat. Sci. Ed.), 2015, 28(3): 1(杨丽, 林修洲, 梅拥军等. 3.5%NaCl薄液膜下碳钢的腐蚀行为研究[J]. 四川理工学院学报(自然科学版), 2015, 28(3): 1)
[28] MIL-STD-870 C-2007, Cadmium Plating, Low Embrittlement, Electrodeposition[S]. 2007
[29] Cole I S, Ganther W D, Sinclair J D, et al.A study of the wetting of metal surface in order to understand the processes controlling atmospheric corrosion[J]. J. Electrochem. Soc., 2004, 151(12): B627
[30] An B G, Zhang X Y, Han E-H, et al.Corrosion of zinc in simulated acid rain solution and under thin electrolyte layer formed by simulated acid rain solution[J]. Acta Metall. Sin., 2004, 40: 202(安百刚, 张学元, 韩恩厚等. Zn在模拟酸雨溶液中及其液膜下的腐蚀[J]. 金属学报, 2004, 40: 202)
[1] Weihang ZHAO, Haowei WANG, Guangyi CAI, Zehua DONG. Localized Corrosion and Corrosion Inhibitor of Al-alloy AA6061 Beneath Electrolyte Layers[J]. 中国腐蚀与防护学报, 2017, 37(4): 366-374.
[2] Qimeng CHEN,Junxi ZHANG,Xujie YUAN,Nianwei DAI. Effect of Alternating Electric Field on Diffusion Coefficient of Oxygen in Thin Electrolyte Layer[J]. 中国腐蚀与防护学报, 2015, 35(6): 549-555.
[3] Wang Jia(Institute of Ocennology;Chinese Academy of Sciences)TSURU Tooru (Tokyo institute of Technology TOkyo Japan). ELECTROCHEMICAL MEASUREMENTS UNDER THIN ELECTROCUTE LAER USING KELVIN PROBE REFERENCE ELECTRODE[J]. 中国腐蚀与防护学报, 1995, 15(3): 173-179.
[4] Wang Jia(Institute of Oceanology;Chinese Academy of Sciences)TSURU Tooru(Tokyo institute of Technology Takyo Japan). AN INVESTIGATION ON OXYGEN REDUCTION UNDER THIN ELECTROLYTE LAYER USING KELVIN PROBE REFERENCE ELECTRODE[J]. 中国腐蚀与防护学报, 1995, 15(3): 180-188.
No Suggested Reading articles found!