Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (2): 155-161    DOI: 10.11902/1005.4537.2016.213
Orginal Article Current Issue | Archive | Adv Search |
Corrosion Behavior of Automotive Cold Rolled Steels DC06 and DP600 in NaHSO3 Solution
Zhixiao XU1(),Herong ZHOU2(),Wang YAO2
1 Process Technology Department, HangYu Lifesaving Equipment Co. Ltd, Xiangyang 441003, China
2 School of Material and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
Download:  HTML  PDF(7408KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The corrosion behavior of automotive cold rolled steels DC06 and DP600 in 0.02 mol/L NaHSO3 solution was studied by full immersion test, mass loss method and electrochemical impedance spectroscopy, as well as SEM and EDS. The results showed that the corrosion product continuously grew, while the mass loss value increased with the extending test time. The corrosion product presents agglomerate- and uneven fluctuant-morphology, which was composed of iron oxides and sulfate. The electrochemical impedance spectroscopy results revealed that the corrosion rate of low carbon steel DC06 and dual phase steel DP600 increased first and then decreased, and then gradually stabilized.

Key words:  cold rolled steel      full immersion test      mass loss      polarization curve      electrochemical impedance spectroscopy     
Received:  01 November 2016     
Fund: Supported by National Natural Science Foundation of China (50971048) and National Science and TechnologyFoundation Platform Project

Cite this article: 

Zhixiao XU,Herong ZHOU,Wang YAO. Corrosion Behavior of Automotive Cold Rolled Steels DC06 and DP600 in NaHSO3 Solution. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 155-161.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.213     OR     https://www.jcscp.org/EN/Y2017/V37/I2/155

Steel C Mn Ti Si P S Al Ni Cr Cu Fe
DC06 0.0023 0.2400 0.015 --- --- --- --- --- --- --- Bal.
DP600 0.0720 0.9123 --- 0.13 0.0358 0.0031 0.0352 0.0173 0.5167 0.0279 Bal.
Table 1  Chemical compositions of DC06 and DP600 steels (mass fraction / %)
Fig.1  Surface (a, c) and cross-section (c, d) structures of two cold rolled steels DC06 (a, b) and DP600 (c, d) steels
Fig.2  Changes of corrosion mass loss of DC06 and DP600 steels with immersion time
Steel A n
DC06 0.06 0.99
DP600 0.28 0.96
Table 2  Fitting values of A and n according to equation (1)
Fig.3  Macro corrosion morphologies of DC06 steel after immersion in 0.02 mol/L NaHSO3 solution for 120 h (a), 360 h (b) and 720 h (c)
Fig.4  Surface morphologies of DC06 steel after immersion in 0.02 mol/L NaHSO3 solution for 120 h (a) and 720 h (b), and EDS analysis result of dot 1 in Fig.4b (c)
Fig.5  Macro corrosion morphologies of DP600 steel after immersion in 0.02 mol/L NaHSO3 solution for 120 h (a), 360 h (b) and 720 h (c)
Fig.6  Surface morphologies and energy spectrum of DP600 steel after immersion in 0.02 mol/L NaHSO3 solution for 120 h (a) and 720 h (b), magnified image of Fig.6b (c) and EDS result of dot 1 in Fig.6c (d)
Fig.7  Polarization curves of DC06 and DP600 steels in 0.02 mol/L NaHSO3 solution
Fig.8  Nyquist plots of DC06 (a) and DP600 (b) steels in 0.02 mol/L NaHSO3 solution
Fig.9  Equivalent circuits of EIS of DC06 and DP600 steels: (a) initial corrosion, (b) middle and late corrosion
Fig.10  Corrosion rates of DC06 and DP600 steels in 0.02 mol/L NaHSO3 solution as a function of time
[1] Li G Y, Ma M T.Auto steels production in China-status and prospect[J]. Steel Roll., 2014, 31(4): 22
[1] (李光瀛, 马鸣图. 我国汽车板生产现状及展望[J]. 轧钢, 2014, 31(4): 22)
[2] Kang Y L, Zhu G M.Development trend of China's automobile in dustry and the opportunities and challenges of steels for automobiles[J]. Iron Steel, 2014, 49(12): 1
[2] (康永林, 朱国明. 中国汽车发展趋势及汽车用钢面临的机遇与挑战[J]. 钢铁, 2014, 49(12): 1)
[3] Li G Y, Tang D, Wang X J.Development in deep working technology of sheet steels for automobiles[J]. Steel Roll., 2013, 30(1): 1
[3] (李光瀛, 唐荻, 王先进. 汽车板深加工技术的发展[J]. 轧钢, 2013, 30(1): 1)
[4] Li L, He Y L, Zhang M, et al.Research and development of advanced automobile sheet steel[J]. J. Shanghai Univ.(Nat. Sci.), 2011, 17: 480
[4] (李麟, 何燕霖, 张梅等. 先进高强度汽车钢板的研制[J]. 上海大学学报 (自然科学版), 2011, 17: 480)
[5] Yu Y, Zhang X M, Jiang Q.Study on fatigue performance of automotive high-strength DP800 steel[J]. Hot Work. Technol., 2013, 42(20): 106
[5] (于燕, 张小盟, 江秋. 汽车用高强度钢板DP800的疲劳性能研究[J]. 热加工工艺, 2013, 42(20): 106)
[6] Guo Y Q, Zhu X F, Yang Y, et al.Research state of lightweight material and manufacture processes in automotive industry[J]. Forg. Stamp. Technol., 2015, 40(3): 1
[6] (郭玉琴, 朱新峰, 杨艳等. 汽车轻量化材料及制造工艺研究现状[J]. 锻压技术, 2015, 40(3): 1)
[7] Bhagavathi L R, Chaudhari G P, Nath S K.Mechanical and corrosion behavior of plain low carbon dual-phase steels[J]. Mater. Des., 2011, 32: 433
[8] Qi H B, Zhang H, Du C W, et al.Corrosion behavior of automobile sheet under mud drops[J]. World Iron Steel, 2009, (6): 52
[8] (齐慧滨, 张红, 杜翠薇等. 汽车钢板的泥滴腐蚀行为[J]. 世界钢铁, 2009, (6): 52)
[9] Colomban P, Cherifi S, Despert G.Raman identification of corrosion products on automotive galvanized steel sheets[J]. J. Raman Spectrosc., 2008, 39: 881
[10] Lee J M.Numerical analysis of galvanic corrosion of Zn/Fe interface beneath a thin electrolyte[J]. Electrochim. Acta, 2006, 51: 3256
[11] Zhang H, Du C W, Qi H B, et al.Corrosion properties of galvanized auto steel sheet with breakages of Zinc coating in NaCl containing solution and mud[J]. Corros. Sci. Prot. Technol., 2009, 21: 333
[11] (张红, 杜翠薇, 齐慧滨等. 镀锌层破损汽车钢板在含NaCl溶液和泥浆中的腐蚀行为与EIS研究[J]. 腐蚀科学与防护技术, 2009, 21: 333)
[12] Zhang H, Du C W, Li X G, et al.Corrosion properties of auto galvanized steel sheet with various broken areas of the Zinc coating[J]. J. Chin. Soc. Corros. Prot., 2009, 29: 172
[12] (张红, 杜翠薇, 李晓刚等. 镀锌层破损汽车钢板的腐蚀行为研究[J]. 中国腐蚀与防护学报, 2009, 29: 172)
[13] Du M, Guo Q K, Zhou C J.Galvanic corrosion of carbon steel/titanium and carbon steel/titanium/navel brass in seawater[J]. J. Chin. Soc. Corros. Prot., 2006, 26: 263
[13] (杜敏, 郭庆馄, 周传静. 碳钢/Ti和碳钢/Ti/海军黄铜在海水中电偶腐蚀的研究[J]. 中国腐蚀与防护学报, 2006, 26: 263)
[14] Xiao K, Dong C F, Li X G, et al.Atmospheric corrosion behavior of weathering steels in initial stage[J]. J. Iron Steel Res., 2008, 20(10): 53
[14] (肖葵, 董超芳, 李晓刚等. 大气腐蚀下耐候钢的初期行为规律[J]. 钢铁研究学报, 2008, 20(10): 53)
[15] Xu Y M, Gao Y, Yang Q F.Pit defect analysis on surface of part in an engine after corrosion[J]. Fail. Anal. Prev., 2008, 3(2): 26
[15] (徐永明, 高芸, 杨庆富. 发动机零件腐蚀后表面麻坑缺陷的分析[J]. 失效分析与预防, 2008, 3(2): 26)
[1] LI Ziyun, WANG Gui, LUO Siwei, DENG Peichang, HU Jiezhen, DENG Junhao, XU Jingming. Early Corrosion Behavior of EH36 Ship Plate Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(5): 463-468.
[2] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[3] LI Xianghong, DENG Shuduan, XU Xin. Inhibition Action of Cassava Starch Ternary Graft Copolymer on Steel in H2SO4 Solution[J]. 中国腐蚀与防护学报, 2020, 40(2): 105-114.
[4] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[5] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[6] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[7] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[8] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[9] Mingyuan JIAO, Weiliang JIN, Jianghong MAO, Teng LI, Jin XIA. Effect of Concrete Inner Environment on Hydrogen Evolution of Rebar During ElectrochemicalRemediation[J]. 中国腐蚀与防护学报, 2018, 38(5): 463-470.
[10] Zengyi SONG, Li LIU, Li DENG, Yuan SUN, Yizhou ZHOU. Electrochemical Dissolution Behavior of N5 Nickel-based Single Crystal Superalloy in Aqua Regia Electrolyte[J]. 中国腐蚀与防护学报, 2018, 38(4): 365-372.
[11] Sanxi DENG, Xiaoyu YAN, Ke CHAI, Jinyi WU, Hongwei SHI. Effect of Pseudomonas sp. on Decomposition and Anticorrosion Behavior of Polysiloxane Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[12] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
[13] Qi GUI, Dajiang ZHENG, Guangling SONG. Electrochemically Accelerated Evaluation of Protectiveness for an Alkyd Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 274-282.
[14] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[15] Fandi MENG, Li LIU, Ying LI, Fuhui WANG. Embedded Microelectrode for In situ Electrochemical Impedance Spectroscopy Measurement of Organic Coating Under Marine Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2017, 37(6): 561-566.
No Suggested Reading articles found!