Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (6): 526-532    DOI: 10.11902/1005.4537.2016.206
Current Issue | Archive | Adv Search |
Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution
Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU(), Cuiwei DU
Corrosion & Protection Center, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(4440KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The effect of Cl- concentration on stress corrosion cracking (SCC) in alkaline solutions of NaCl/Na2S was assessed by means of slow strain rate test (SSRT) and U-type bending immersion test, as well as measurements of potentiodynamic polarization, electrochemical impedance spectra (EIS). 316L stainless steel exhibits SCC susceptibility to a certain extent in alkaline NaCl/Na2S solution, while Cl- and S2- have a competitive effect on the corrosion process of 316L stainless steel, resulting in the extreme value of electrochemical impedance. With the increasing of Cl- concentration, the effect of hydrogen-induced plasticity (HIP) can increase the elongation to a certain extent and decrease the plastic loss of 316L stainless steel, but it has little effect on the tensile strength of 316L stainless steel.

Key words:  316L stainless steel      alkaline solution      Cl-      S2-      stress corrosion cracking     
Received:  23 October 2016     
ZTFLH:  TG178  
Fund: Supported by National Natural Science Foundation of China (51471034 and 51771028)

Cite this article: 

Xiaocheng ZHOU, Qiaoqi CUI, Jinghuan JIA, Zhiyong LIU, Cuiwei DU. Influence of Cl- Concentration on Stress Corrosion Cracking Behavior of 316L Stainless Steel in Alkaline NaCl/Na2S Solution. Journal of Chinese Society for Corrosion and protection, 2017, 37(6): 526-532.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.206     OR     https://www.jcscp.org/EN/Y2017/V37/I6/526

Fig.1  Specimen sizes of SSRT (a) and U-bend (b)
Fig.2  Nyquist plots of 316L stainless steel in alkaline NaCl/Na2S solutions with different Cl- concentrations
Fig.3  Equivalent circuit used for modeling
Fig.4  Variations of charge transfer resistance Rct and corrosion resistance Rf with Cl- concentration
Fig.5  Potentiodynamic polarization curves (a), passivation region I (b) and passivation-break region II (c) of 316L stainless steel in alkaline NaCl/Na2S solutions with different Cl- concentrations
Fig.6  Fitting values of Eb and Imain of 316L stainless steel in alkaline NaCl/Na2S solutions with different Cl- concentrations
Fig.7  SSRT curves of 316L stainless steel in alkaline NaCl/Na2S solutions with different Cl- concentrations
Fig.8  Losses of elongation and reduction of area of 316L stainless steel in alkaline NaCl/Na2S solutions with different Cl- concentrations
Fig.9  Fracture apperances of 316L stainless steel in air (a, b) and in alkaline NaCl/Na2S solutions with 500 mg/L (c, d), 35000 mg/L (e, f) and 50000 mg/L (g, h) Cl-
Fig.10  Corrosion morphologies of 316L stainless steel after U-bending tests for 30 d in alkaline NaCl/Na2S solutions with 500 mg/L (a, b), 5000 mg/L (c, d), 35000 mg/L (e, f) and 50000 mg/L (g, h) Cl-
Fig.11  S2- and Cl- induced surface destructions of 316L stainless steel under different conditions: (a) complete passivation film, (b) hydrolysis process of S2- and generation of FeS, (c) competitive adsorption of S2- and Cl-, (d) replacement of S2- by Cl-
[1] Li J, Qi Y.Corrosion and protection of the pretreatment system of continuous catalytic reforming unit[J]. Corros. Prot. Petro. Ind., 2014, 31: 27(李佳, 亓越. 连续催化重整装置预处理系统的腐蚀与防护[J]. 石油化工腐蚀与防护, 2014, 31: 27)
[2] Xing X J, Yang M H, Jiang Y J, et al.Summary of high-chlorine crude oil processing[J]. Petro. Ref. Eng., 2015, 45: 7(邢献杰, 杨明辉, 江煜杰等. 高氯原油加工情况总结[J]. 炼油技术与工程, 2015, 45: 7)
[3] Sun L, Hou Y H, Yang X, et al.Effect of chlorine ion and sulfur ion on corrosion of 316L stainless steel and monel alloy in oil refining process[J]. Surf. Technol., 2015, 44: 41(孙亮, 侯艳宏, 杨席等. 炼油加工过程中氯离子与硫离子对316L不锈钢和Monel合金腐蚀的影响[J]. 表面技术, 2015, 44: 41)
[4] Zhang J Z, Jiang J Q, Liu W Y, et al.Electrochemical corrosion in refinery and anticorrosion technology research[J]. Henan Chem. Ind., 2011, 28: 13(张金钟, 蒋吉强, 刘万元等. 炼油厂电化学腐蚀以及防腐工艺的研究现状[J]. 河南化工, 2011, 28: 13)
[5] Du Y X, Zhang L.A review on the anti-corrosion technologies in refinery[J]. Corros. Prot., 2005, 26: 82(杜荣熙, 张林. 炼油厂工艺防腐蚀技术分析[J]. 腐蚀与防护, 2005, 26: 82)
[6] Yu C Y.Understanding and consideration of stress corrosion induced crack occurred in petrochemical stainless steel equipment[J]. Proc. Equip. Pipeline, 2012, 49: 58(余存烨. 对石化设备不锈钢应力腐蚀开裂的认识与反思[J]. 化工设备与管道, 2012, 49: 58)
[7] Hao W K, Liu Z Y, Du C W, et al.Stress corrosion cracking behavior of 16Mn steel and heat-affected zone in alkaline sulfide with different concentrations[J]. CIESC J., 2013, 64: 4143(郝文魁, 刘智勇, 杜翠薇等. 不同硫化物浓度碱性溶液中16Mn钢及热影响区应力腐蚀行为[J]. 化工学报, 2013, 64: 4143)
[8] Meng G Z, Li Y, Shao Y W, et al.Effect of Cl- on the properties of the passive films formed on 316L stainless steel in acidic solution[J]. J. Mater. Sci. Technol., 2014, 30: 253
[9] He W, Knudsen O ?, Diplas S.Corrosion of stainless steel 316L in simulated formation water environment with CO2-H2S-Cl-[J]. Corros. Sci., 2009, 51: 2811
[10] Nishimura R, Maeda Y.SCC evaluation of type 304 and 316 austenitic stainless steels in acidic chloride solutions using the slow strain rate technique[J]. Corros. Sci., 2004, 46: 769
[11] Boissy C, Alemany-Dumont C, Normand B.EIS evaluation of steady-state characteristic of 316L stainless steel passive film grown in acidic solution[J]. Electrochem. Commun., 2013, 26: 10
[12] Freire L, Carmezim M J, Ferreira M G S, et al. The passive behaviour of AISI 316 in alkaline media and the effect of pH: A combined electrochemical and analytical study[J]. Electrochim. Acta, 2010, 55: 6174
[13] Andrade C, Keddam M, Nóvoa X R, et al.Electrochemical behaviour of steel rebars in concrete: Influence of environmental factors and cement chemistry[J]. Electrochim. Acta, 2001, 46: 3905
[14] Díaz B, Joiret S, Keddam M.Passivity of iron in red mud’s water solutions[J]. Electrochim. Acta, 2004, 49: 3039
[15] Hardie D, Charles E A, Lopez A H.Hydrogen embrittlement of high strength pipeline steels[J]. Corros. Sci., 2006, 48: 4378
[16] Liu Z Y, Wang X Z, Du C W, et al.Effect of hydrogen-induced plasticity on the stress corrosion cracking of X70 pipeline steel in simulated soil environments[J]. Mater. Sci. Eng., 2016, A658: 348
[17] Jia J H, Liu Z Y, Du C W, et al.Stress corrosion behavior of 316L stainless steel in high-pH alkaline sulphide solution[J]. Surf. Technol., 2015, 44(3): 36(贾静焕, 刘智勇, 杜翠薇等. 316L不锈钢在高pH碱性硫化物环境中的应力腐蚀行为[J]. 表面技术, 2015, 44(3): 36)
[18] Yang H Y, Chen J J, Cao C N, et al.Study on corrosion and inhibition mechanism in H2S aqueous solutions. III. electrochemical behavior of carbon steel in the different pH solutions containing H2S[J]. J. Chin. Soc. Corros. Prot., 2000, 20(2): 97(杨怀玉, 陈家坚, 曹楚南等. H2S水溶液中的腐蚀与缓蚀作用机理的研究[J]. 中国腐蚀与防护学报, 2000, 20(2): 97)
[19] Kolotytkin Y M, Laxorenko R M, Sokolova L A.Spectroscopic studies of water adsorption on iron group metals[J]. J. Electroanal. Chem. Interface Electrochem., 1987, 228: 301
[20] Hoar T P, Jacon W R.Breakdown of passivity of stainless steel by halide ions[J]. Nature, 1967, 216: 1299
[21] Hao W K, Liu Z Y, Ma Y, et al.Stress corrosion cracking behavior of 16Mn steel and heat-affected zone in alkaline sulfide with different pH value[J]. Mater. Eng., 2015, 43(3): 28(郝文魁, 刘智勇, 马岩等. 不同pH的碱性环境中16Mn钢及热影响区应力腐蚀行为[J]. 材料工程, 2015, 43(3): 28)
[22] Miresmaeili R, Liu L J, Kanayama H. A possible explanation for the contradictory results of hydrogen effects on macroscopic deformation [J]. Int. J. Pressure Vessels Pip., 2012, 99/100: 34
[1] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[3] DENG Peichang, ZHONG Jie, WANG Kun, HU Jiezhen, LI Ziyun, CHEN Chuxin, SHEN Xiaohan. Important Influential Factor for Corrosion of High-altitude Marine Engineering Equipment in Atmosphere-chloride Ion Deposition Rate[J]. 中国腐蚀与防护学报, 2020, 40(5): 474-478.
[4] WEN Yang, XIONG Lin, CHEN Wei, XUE Gang, SONG Wenxue. Chloride Penetration Resistance of Polyvinyl Alcohol Fiber Concrete under Dry and Wet Cycle in Chloride Salt Solutions[J]. 中国腐蚀与防护学报, 2020, 40(4): 381-388.
[5] ZHU Lixia, JIA Haidong, LUO Jinheng, LI Lifeng, JIN Jian, WU Gang, XU Congmin. Effect of Applied Potential on Stress Corrosion Behavior of X80 Pipeline Steel and Its Weld Joint in a Simulated Liquor of Soil at Lunnan Area of Xinjiang[J]. 中国腐蚀与防护学报, 2020, 40(4): 325-331.
[6] ZHANG Zhen, WU Xinqiang, TAN Jibo. Review of Electrochemical Noise Technique for in situ Monitoring of Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2020, 40(3): 223-229.
[7] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[8] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[9] CHEN Xu,MA Jiong,LI Xin,WU Ming,SONG Bo. Synergistic Effect of SRB and Temperature on Stress Corrosion Cracking of X70 Steel in an ArtificialSea Mud Solution[J]. 中国腐蚀与防护学报, 2019, 39(6): 477-483.
[10] Baojie WANG,Jiyu LUAN,Shidong WANG,Daokui XU. Research Progress on Stress Corrosion Cracking Behavior of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2019, 39(2): 89-95.
[11] Keqian ZHANG,Shilin HU,Zhanmei TANG,Pingzhu ZHANG. Review on Stress Corrosion Crack Propagation Behavior of Cold Worked Nuclear Structural Materials in High Temperature and High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(6): 517-522.
[12] Yukun WANG, Jing LIU, Qian HU, Feng HUANG. Effect of S2- on Corrosion Behavior of A710 Steel in NaCl Solution[J]. 中国腐蚀与防护学报, 2018, 38(3): 233-240.
[13] Ruolin ZHU, Litao ZHANG, Jianqiu WANG, Zhiming ZHANG, En-Hou HAN. Stress Corrosion Crack Propagation Behavior of Elbow Pipe of Nuclear Grade 316LN Stainless Steel in High Temperature High Pressure Water[J]. 中国腐蚀与防护学报, 2018, 38(1): 54-61.
[14] Yanliang WANG,Xu CHEN,Jidong WANG,Bo SONG,Dongsheng FAN,Chuan HE. Electrochemical Behavior of 316L Stainless Steel in Borate Buffer Solution with Different pH[J]. 中国腐蚀与防护学报, 2017, 37(2): 162-167.
[15] Naiqiang ZHANG,Guoqiang YUE,Fabin LV,Qi CAO,Mengyuan LI,Hong XU. Crack Growth Rate of Stress Corrosion Cracking of Inconel 625 in High Temperature Steam[J]. 中国腐蚀与防护学报, 2017, 37(1): 9-15.
No Suggested Reading articles found!