Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (6): 519-525    DOI: 10.11902/1005.4537.2016.205
Current Issue | Archive | Adv Search |
Effect of Aging Temperature on Microstructure and Corrosion Resistance of S32750 Super Duplex Stainless Steel in Hydrofluoric Acid
Xuguang PANG1, Runqing LIU1, Wentao WANG2, Yanhua SHI1, Fei LI1, Ping LIANG1()
1 School of Mechanical Engineering, Liaoning Shihua University, Fushun 113001, China
2 Fushun Mechanical Equipment Manufacturing Co., Ltd., Fushun 113005, China
Download:  HTML  PDF(2589KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

S32750 super duplex stainless steel (SDSS) was aged in the temperature range 650 ℃ to 1000 ℃, and then was characterized by means of optical microscope (OM), scanning electronic microscope (SEM) and X-ray diffractometer (XRD). The corrosion resistance of the aged steel in 5%(volume fraction) HF solution was assessed by measurements of potentiodynamic polarization, electrochemical impedance spectra (EIS) and Mott-Schokkty plots. Results show that the σ phase precipitated in the steel in the temperature range from 750 ℃ to 950 ℃, but not at 650 ℃ and 1000 ℃ respectively. Among others, the amount of σ phase is the highest and correspondingly, the corrosion resistance is also the worst for the steel aged at 850 ℃. This is mainly because of that the precipitates of σ phase lead to the segregation of Cr and Mo within the steel, thus the non-uniform distribution of the alloying elements in the steel may induce galvanic corrosion within the steel , which accelerates the dissolution of SDSS. At the same time, the σ phase precipitation may also induce the increase of carrier densities of the formed passive film of the steel in HF solution, which enhanced the adsorption of F-, and in turn the dissolution rate of passive film and finally reduced the stability of the passive film, thus, the corrosion rate of SDSS in HF is accelerated.

Key words:  S32750 super duplex stainless steel      hydrofluoric acid      σ phase      aging temperature     
Received:  21 October 2016     
ZTFLH:  TG174.2  
Fund: Supported by National Natural Science Foundation of China (51175240) and General Scientific Research Funds from Liaoning Education Department (L2012127)

Cite this article: 

Xuguang PANG, Runqing LIU, Wentao WANG, Yanhua SHI, Fei LI, Ping LIANG. Effect of Aging Temperature on Microstructure and Corrosion Resistance of S32750 Super Duplex Stainless Steel in Hydrofluoric Acid. Journal of Chinese Society for Corrosion and protection, 2017, 37(6): 519-525.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.205     OR     https://www.jcscp.org/EN/Y2017/V37/I6/519

Fig.1  Microstructure images of S32750 SDSS after aging at 650 ℃ (a), 750 ℃ (b), 850 ℃ (c), 950 ℃ (d) and 1000 ℃ (e)
Fig.2  XRD patterns of S32750 SDSS after aging at different temperatures
Fig.3  SEM image (a) and EDS result (b) of S32750 SDSS after aging at 950 ℃ for 20 min
Fig.4  Nyquist (a) and Bode (b) plots of various temperatures aged S32750 SDSS in 5%HF solution
Fig.5  Equivalent circuit for fitting EIS of S32750 SDSS in 5%HF solution
Fig.6  Variations of Rt and Rf of S32750 SDSS with aging temperature
Test position Cr Ni Mo Phase
Point 1 25.18 6.98 2.05 γ
Point 2 25.81 6.04 4.93 α
Point 3 27.80 4.44 5.85 σ
Point 4 25.60 7.11 1.90 γ2
Table 1  Chemical compositions of different zone in Fig.3(mass fraction / %)
Fig.7  Potentiodynamic polarization curves of S32750 SDSS with different aging temperatures in 5%HF solution
Fig.8  Free corrosion potential and free corrosion current density of S32750 SDSS in 5%HF solution as a fun-ction of aging temperature
Fig.9  Mott-Schottky plots of S32750 SDSS aged at different temperatures in 5%HF solution
Aging temperature / ℃ NA / 1022 cm-3 ND / 1021 cm-3
650 1.34 2.24
750 1.43 2.31
850 2.36 3.51
950 2.28 3.17
1000 1.20 1.89
Table 2  Fitting values of donor and acceptor densities of S32750 SDSS aged at different temperatures
[1] Hosseini V A, Bermejo M A V, G?rdstam J, et al. Influence of multiple thermal cycles on microstructure of heat-affected zone in TIG-welded super duplex stainless steel[J]. Weld. World, 2016, 60: 233
[2] Santos T F A, Torres E A, Lippold J C, et al. Detailed microstructural characterization and restoration mechanisms of duplex and super duplex stainless steel friction-stir-welded joints[J]. J. Mater. Eng. Perform., 2016, 25: 5173
[3] Theodoro M C, Pereira V F, Mei P R, et al.Dissimilar friction stir welding between UNS S31603 austenitic stainless steel and UNS S32750 super duplex stainless steel[J]. Metall. Mater. Trans., 2015, 46B: 1440
[4] Shamanian M, Mohammadnezhad M, Amini M, et al.Electron backscatter diffraction analysis of joints between AISI 316L Austenitic/UNS S32750 dual-phase stainless steel[J]. J. Mater. Eng. Perform., 2015, 24: 3118
[5] Berecz T, Fazakas é, Mészáros I, et al.Decomposition kinetics of ferrite in isothermally aged SAF 2507-type duplex stainless steel[J]. J. Mater. Eng. Perform., 2015, 24: 4777
[6] Zhao Z Y, Xu L, Li G P, et al.Precipitation behavior of σ-phase and its effect on microstructure and properties of a super duplex stainless steel[J]. Trans. Mater. Heat Treat., 2010, 31(10): 75(赵志毅, 徐林, 李国平等. 超级双相不锈钢σ相析出及对组织性能的影响[J]. 材料热处理学报, 2010, 31(10): 75)
[7] Xiang H L, He F S, Liu D.Effects of aging temperature on precipitation phase of a cast super duplex stainless steel[J]. Acta Metall. Sin., 2009, 45: 1456(向红亮, 何福善, 刘东. 时效温度对铸造超级双相不锈钢析出相的影响[J]. 金属学报, 2009, 45: 1456)
[8] Zou D N, Han Y, Zhang W, et al.Sigma phase precipitation and properties of super-duplex stainless steel UNS S32750 aged at the nose temperature[J]. J. Wuhan Univ. Technol. Mater. Sci., 2011, 26: 182
[9] Guo L F, Li X J, Sun T, et al.The influence of sensitive temperature on the localized corrosion resistance of duplex stainless steel SAF 2304[J]. Acta Metall. Sin., 2012, 48: 1503(郭丽芳, 李旭姜, 孙涛等. 敏化温度对SAF2304双相不锈钢耐局部腐蚀性能的影响[J]. 金属学报, 2012, 48: 1503)
[10] Rahmani M, Eghlimi A, Shamanian M.Evaluation of microstructure and mechanical properties in dissimilar austenitic/super duplex stainless steel joint[J]. J. Mater. Eng. Perform., 2014, 23: 3745
[11] Bhattacharya A, Singh P M.Effect of heat treatment on corrosion and stress corrosion cracking of S32205 duplex stainless steel in caustic solution[J]. Metall. Mater. Trans., 2009, 40A: 1388
[12] Cheng X Q, Li X G, Du C W.Properties of passive film formed on 316L/2205 stainless steel by Mott-Schottky theory and constant current polarization method[J]. Chin. Sci. Bull., 2009, 54: 2239
[13] Ferreira M G S, Hakiki N E, Goodlet G, et al. Influence of the temperature of film formation on the electronic structure of oxide films formed on 304 stainless steel[J]. Electrochim. Acta, 2001, 46: 3767
[14] Xiang H L, He F S, Liu D.Corrosion compositions on surface after electrochemical polarization of duplex stainless cast steel by XPS[J]. J. Chin. Soc. Corros. Prot., 2010, 30: 288(向红亮, 何福善, 刘东. 超级双相不锈铸钢电化学极化表面腐蚀产物的XPS分析[J]. 中国腐蚀与防护学报, 2010, 30: 288)
[15] Ye W, Li Y, Wang F H.Effect of nanocrystallization on the electrochemical corrosion behavior of 309 stainless steel[J]. J. Chin. Soc. Corros. Prot., 2008, 28: 25(叶威, 李瑛, 王福会. 309不锈钢纳米涂层在酸性溶液中的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2008, 28: 25)
[16] Dong Y, Lin X P, Jiang X X.Effect of Cr, Mo on resistance to the corrosion and corrosion wear of stainless steel[J]. Mater. Mech. Eng., 1997, 21: 29(董允, 林晓娉, 姜晓霞. 铬、钼对不锈钢腐蚀与腐蚀磨损性能的影响[J]. 机械工程材料, 1997, 21: 29)
[17] Ye W, Li Y, Wang F H.Electrochemical corrosion behavior of nano-crystalline stainless steel coating with different phase composition[J]. J. Chin. Soc. Corros. Prot., 2008, 28: 129(叶威, 李瑛, 王福会. 单相和双相不锈钢纳米涂层的电化学腐蚀行为[J]. 中国腐蚀与防护学报, 2008, 28: 129)
[18] MacDonald D D, Urquidi-MacDonald M. Theory of steady state passive films[J]. J. Electrochem. Soc., 1990, 137: 2395
[19] MacDonald D D. The point defect model for the passive state[J]. J. Electrochem. Soc., 1992, 139: 3434
[20] Cheng X Q, Li C T, Li X G, et al.Constituent phases of the passive film formed on 2205 stainless steel by dynamic electrochemical impedance spectroscopy[J]. Int. J. Miner. Metall. Mater., 2011, 18: 42
[1] HUA Xiaozhen, HUANG Jinhua, NIE Lun, ZHOU Xianliang, PENG Xinyuan. Effect of Aging Temperature on Microstructure and Corrosion Behavior of 15-5PH Precipitation Hardened Stainless Steel[J]. 中国腐蚀与防护学报, 2014, 34(2): 131-137.
[2] ZENG Hongtao,XIANG Song,LIU Songlin,HE Yonggang. Corrosion Behaviors of 904L Austenite Stainless Steel in Concentrated Sulfuric Acid Containing Hydrofluoric Acid[J]. 中国腐蚀与防护学报, 2013, 33(3): 182-187.
[3] ZHAO Yi, WANG Fu. EFFECT OF HEAT TREATMENT PROCESSES ON SEAWATER CORROSION RESISTANCE PROPERTY OF 17-4PH STEEL[J]. 中国腐蚀与防护学报, 2011, 31(6): 473-477.
[4] ZHANG Yingjun, FENG Tao, SHAO Yawei, MENG Guozhe, ZHANG Tao, WANG Fuhui. EFFECT OF PANI/ EPOXY COATING ON THE CORROSION RESISTANCE OF AZ91D MAGNESIUM ALLOY[J]. 中国腐蚀与防护学报, 2010, 30(4): 283-287.
No Suggested Reading articles found!