Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (2): 101-109    DOI: 10.11902/1005.4537.2016.202
Orginal Article Current Issue | Archive | Adv Search |
Corrosion Behavior of Extra Deep Drawing Cold Rolled Sheet in Stimulative Ocean-atmosphere Environment
Chengliang MAO1,Kui XIAO1,2(),Chaofang DONG1,2,Junsheng WU1,2,Lidan YAN1,Li JIANG1
1 Corrosion and Protection Center, University of Science and Technology Beijing, Beijing 100083, China
2 Key Laboratory for Corrosion and Protection (MOE), University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(3324KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The conversion period for the corrosion data of steels acquired respectively by the outerdoor exposure test and the indoor neutral salt spray test, which aims to simulate the corrosivity of the marine atmospheric environment at Wanning, was calculated by means of the equivalent conversion method, while taking the real marine atmospheric environmental data over the past three years at Wanning area into account. Then the corrosion behavior of an extra deep drawing cold rolled sheet DC06 and a carbon steel Q235 was comparatively studied through neutral salt spray test for desired conversion periods. In the meanwhile, the correlation between the results of the indoor neutral salt spray accelerated test and the outdoor air exposure test at Wanning is quantitatively studied by the grey correlation degree method. The results show that the corrosion kinetics curves of DC06 and Q235 by neutral salt spray test are in accordance with the power function law. For DC06 and Q235, their relevant results of neutral salt spray test for the conversion period (528 ha-1) and the common period (480 ha-1) respectively showed gray correlation degrees greater than 0.6 with those of the outdoor atmospheric exposure test at Wanning,indicating that the corrosion dynamics results measured indoor and outdoor respectively are of consistency. It is noted that the grey correlation degrees for the outdoor test results with those of indoor test for the conver sion period are higher than those for the common period.

Key words:  extra deep drawing cold rolled sheet      DC06      equivalent conversion      accelerated test      rey relational degree     
Received:  14 October 2016     

Cite this article: 

Chengliang MAO,Kui XIAO,Chaofang DONG,Junsheng WU,Lidan YAN,Li JIANG. Corrosion Behavior of Extra Deep Drawing Cold Rolled Sheet in Stimulative Ocean-atmosphere Environment. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 101-109.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.202     OR     https://www.jcscp.org/EN/Y2017/V37/I2/101

Material RH / % Temperature / ℃
20 25 30 35
Steel 70 0.13862 0.02049 0.24066 0.34024
80 0.12590 0.14173 0.44544 0.59702
90 0.08226 0.32299 0.57282 1.00000
Table 1  Reduction factor of moist air and standard moist air
Material Concentration / of NaCl α
Steel 0.5% 0.485
1.7% 0.417
3.5% 0.320
7.0% 0.310
Table 2  Reduction factor of different concentration(mass fraction) of NaCl in water medium
Year Temperature / ℃ Precipitation / h Fog / h Humidity / h
RH=70% RH=80% RH=90%
2012 20 162.8 170.5 --- 1217.7 1099.7
25 146.4 167.4 --- 2482.1 545.4
30 82.5 20.3 --- 1545.5 ---
2013 20 65.7 98.1 528.5 601.4 639.4
25 233.2 204.1 --- 1531.3 1448.5
30 68.8 79.5 --- 1491.1 ---
2014 20 90.3 119.6 --- 1171.2 538.6
25 168.7 149.5 --- 1998.3 1045.1
30 89.8 20.9 --- 1542.5 ---
Table 3  Accumulation of precipitation, fog, temperature and humidity in Wanning station
Steel C S Mn Si Ti P Fe
Q235 0.1900 0.0042 0.39 0.26 --- 0.0076 Bal.
DC06 0.0053 0.0045 0.22 --- 0.12 0.0190 Bal.
Table 4  Chemical compositions of Q235 and DC06 steels (mass fraction / %)
Fig.1  Corrosion mass loss curves of Q235 (a) and DC06 (b) steels in different periods after neutral salt spraytest (528 ha-1)
Steel A n R2
Q235 1.59262 0.94827 0.97407
DC06 2.86327 0.88896 0.99060
Table 5  Relevant parameters of fitting curves
Fig.2  SEM images of Q235 steel after salt spray test for 11 d (a), 22 d (b), 33 d (c) and 44 d (d)
Fig.3  SEM images of DC06 steel after salt spray test for 11 d (a), 22 d (b), 33 d (c) and 44 d (d)
Fig.4  XRD spectra of corrosion products of Q235 (a) and DC06 (b) steels after salt spray test in different periods
Fig.5  Polarization curves of Q235 (a) and DC06 (b) steels after salt spray test in different periods
Test 0.5 a (264 h) 1 a (528 h) 1.5 a (792 h) 2 a (1056 h) 2.5 a (1320 h) 3 a (1584 h)
Exposure x0 371.43 571.12 743.56 878.17 1008.62 1129.47
x2 336.30 566.64 768.87 954.76 1129.37 1295.50
Accelerated x1 414.98 629.88 869.99 1099.47 1367.46 1828.38
x3 439.77 825.00 1000.70 1365.57 1679.35 2049.41
Table 6  Statistic of corrosion mass loss of Q235 and DC06 steels in accelerated and exposure test (528 ha-1)
Test 0.5 a (240 h) 1 a (480 h) 1.5 a (720 h) 2 a (960 h) 2.5 a (1200 h) 3 a (1440 h)
Exposure x0 371.43 571.12 743.56 878.17 1008.62 1129.47
x2 336.30 566.64 768.87 954.76 1129.37 1295.50
Accelerated x1 259.10 550.42 751.79 1023.04 1175.93 1577.78
x3 313.94 616.87 940.65 1243.32 1786.95 1952.61
Table 7  Statistic of corrosion mass loss of Q235 and DC06 steels in accelerated and exposure test (480 ha-1)
Test 0.5 a (264 h) 1 a (528 h) 1.5 a (792 h) 2 a (1056 h) 2.5 a (1320 h) 3 a (1584 h)
Exposure Y0 1.0000 1.5376 2.0019 2.3643 2.7155 3.0409
Y2 1.0000 1.6849 2.2863 2.8390 3.3582 3.8522
Accelerated Y1 1.0000 1.5179 2.0965 2.6495 3.2952 4.4059
Y3 1.0000 1.8760 2.2755 3.1052 3.8187 4.6602
Table 8  Statistic of pretreatment loss data of Q235 and DC06 steels in accelerated and exposure test (528 ha-1)
Test 0.5 a (240 h) 1 a (480 h) 1.5 a (720 h) 2 a (960 h) 2.5 a (1200 h) 3 a (1440 h)
Exposure Y0 1.0000 1.5376 2.0019 2.3643 2.7155 3.0409
Y2 1.0000 1.6849 2.2863 2.8390 3.3582 3.8522
Accelerated Y1 1.0000 2.1244 2.9015 3.9484 4.5385 6.0895
Y3 1.0000 1.9649 2.9963 3.9604 5.6920 6.2197
Table 9  Statistic of pretreatment loss data of Q235 and DC06 steels in accelerated and exposure test (480 ha-1)
Steel Time 0.5 a (264 h) 1 a (528 h) 1.5 a (792 h) 2 a (1056 h) 2.5 a (1320 h) 3 a (1584 h)
Q235 01 0 0.1977 0.0946 0.2852 0.5797 1.3651
DC06 02 0 0.1911 0.0108 0.2662 0.4605 0.8080
Table 10  Absolute difference of loss date of Q235 and DC06 steels in accelerated and exposure test (528 ha-1)
Steel Time 0.5 a (240 h) 1 a (480 h) 1.5 a (720 h) 2 a (960 h) 2.5 a (1200 h) 3 a (1440 h)
Q235 01 0 0.5867 0.8997 1.5841 1.8230 3.0485
DC06 02 0 0.2800 0.7100 1.1214 2.3338 2.3675
Table 11  Absolute difference of loss date of Q235 and DC06 steels in accelerated and exposure test (480 ha-1)
Cycle time γ
Q235 steel (528 ha-1) 0.7383
DC06 steel (528 ha-1) 0.6761
Q235 steel (480 ha-1) 0.6050
DC06 steel (480 ha-1) 0.6029
Tabl 12  Grey correlation of atmospheric exposure testsand accelerated tests
[1] Kang H J.Research and development of extra-deep drawing DC06 [D]. Shenyang: Northeastern University, 2009
[1] (康海军. 汽车用超深冲钢DC06的研制开发 [D]. 沈阳: 东北大学, 2009)
[2] Li G Y, Zhou J Z.Development and application of high grade auto sheet steels[J]. J. Iron Steel Res., 2012, 24(suppl.1): 1
[2] (李光瀛, 周积智. 高等级汽车板的开发与应用[J]. 钢铁研究学报, 2012, 24(增刊1): 1)
[3] Yang X H, Jin P.Compile of aircraft operation environment spectrum[J]. Equip. Environ. Eng., 2010, 7(6): 99
[3] (杨晓华, 金平. 飞机使用环境谱的编制[J]. 装备环境工程, 2010, 7(6): 99)
[4] Zhang X J, Shu D X, Chen J Q.Study on the weather and corrosion characteristics of Wanning exposure site[J]. Equip. Environ. Eng., 2005, 2(4): 73
[4] (张先勇, 舒德学, 陈建琼. 海南万宁试验站大气环境及腐蚀特征研究[J]. 装备环境工程, 2005, 2(4): 73)
[5] Bai Z H, Huang Y H, Li X G, et al.Environmental corrosion in industrial-marine atmosphere at Qingdao of 7050 Al-alloy anodized in boric- and sulfuric-acid electrolyte[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 580
[5] (白子恒, 黄运华, 李晓刚等. 硫硼酸阳极氧化处理的7050铝合金在工业海洋大气中的腐蚀行为[J]. 中国腐蚀与防护学报, 2016, 36: 580)
[6] Zhang D D, Zhao C Y, Wang C, et al.Atmospheric aerosols corrosion[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 91
[6] (张丹丹, 赵春英, 汪川等. 大气气溶胶腐蚀[J]. 中国腐蚀与防护学报, 2015, 35: 91)
[7] Tang Q H, Li J N, Dai H.Contrast research on corrosivity of Wanning seaside and Xisha Islands atmosphere[J]. Equip. Environ. Eng., 2010, 7(6): 1
[7] (唐其环, 李军念, 代红. 万宁滨海与西沙群岛大气腐蚀性对比研究[J]. 装备环境工程, 2010, 7(6): 1)
[8] Liu C C, Lu G F, Zhang J K, et al.Differences between environment spectrums of 2A12 and 30CrMnSiA in the same ocean atmospheric environment[J]. Corros. Prot., 2015, 36: 609
[8] (刘成臣, 鲁国富, 张金奎等. 2A12与30CrMnSiA在相同海洋大气环境中的加速环境谱差异[J]. 腐蚀与防护, 2015, 36: 609)
[9] Yu Q C, Wang Z Y, Wang C.Corrosion behaviors of low alloy steel and carbon steel deposited with NaCl and NaHSO3 under dry/humid alternative condition[J]. Acta Metall. Sin., 2010, 46: 1133
[9] (于全成, 王振尧, 汪川. 表面沉积NaCl和NaHSO3的低合金钢和碳钢在干湿交替条件下的腐蚀行为[J]. 金属学报, 2010, 46: 1133)
[10] Liu G C, Dong J H, Han E-H, et al.Progress in research on rust layer of weathering steel[J]. Corros. Sci. Prot. Technol., 2006, 18: 268
[10] (刘国超, 董俊华, 韩恩厚等. 耐候钢锈层研究进展[J]. 腐蚀科学与防护技术, 2006, 18: 268)
[11] Ma Y T, Li Y, Wang F H.Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corros. Sci., 2009, 51: 997
[12] Ma Y T, Li Y, Wang F H.The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment[J]. Mater. Chem. Phys., 2008, 112: 844
[13] Evans V R.The Corrosion and Oxidation of Metals: Second Supplementary Volume[M]. London, England: Edward Arnold, 1976
[14] Matsushima I, Ueno T.On the protective nature of atmosph rust on low-alloy steel[J]. Corros. Sci., 1971, 11: 129
[15] Moutarlier V, Gigandet M P, Normand B, et al.EIS characterisation of anodic films formed on 2024 aluminium alloy, in sulphuric acid containing molybdate or permanganate species[J]. Corros. Sci., 2005, 47: 937
[1] Wang YAO, Herong ZHOU, Kui XIAO, Pengyang LIU, Jiayong DAN, Run WU. Corrosion Behavior of DC06 Extra Deep Drawing Cold Rolled Steel in Neutral Salt Spray Test[J]. 中国腐蚀与防护学报, 2018, 38(3): 241-247.
[2] Xiaofei CUI, Xiaoming TAN, De WANG, Ang QIAN. Assessment of Aging Performance of Polyurethane Coating for 7B04 Al-alloy with an Accelerated Testing Spectrum[J]. 中国腐蚀与防护学报, 2018, 38(1): 74-80.
[3] ZHONG Xizhou, WANG Zhenyao, LIU Yanjie, WANG Binbin, BAI Fang, DOU Zhihong. Corrosion Behavior of Galvanized Steel in Simulated Ocean Atmosphere[J]. 中国腐蚀与防护学报, 2015, 35(2): 151-155.
[4] LUO Hong,LI Xiaogang,DONG Chaofang,XIAO Kui. Research on Atmosphere Exposure in Tropical Marine and Accelerated Corrosion Test of
304 Stainless Steel
[J]. 中国腐蚀与防护学报, 2013, 33(3): 193-198.
[5] ZHENG Qifei; SUN Shuangqing; WEN Junguo; LI Defu. EFFECTS OF THE SOLUBLE SALTS IN DESERT DUST ON ATMOSPHERIC CORROSION OF ALUMINIUM[J]. 中国腐蚀与防护学报, 2010, 30(1): 72-77.
[6] YAN Jie LIU Lihong JI Chunyang HUANG Ruiyi. DEVELOPMENT OF NATURAL ATMOSPHERIC ENVIRONMENTAL TEST IN THE WORLD[J]. 中国腐蚀与防护学报, 2009, 29(1): 69-75.
[7] . The Influence of Different Enviroments on Stress Corrosion Cracking[J]. 中国腐蚀与防护学报, 2007, 27(6): 354-362 .
[8] Jianping Cai; Ming Liu; Zhenhua Luo; Zhihui Tang; Bin Li. Study on Accelerated Tests for Aluminum Alloy Atmospheric Corrosion[J]. 中国腐蚀与防护学报, 2005, 25(5): 262-266 .
No Suggested Reading articles found!