Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (1): 1-8    DOI: 10.11902/1005.4537.2016.189
Current Issue | Archive | Adv Search |
Oxidation Behavior during High Temperature Homo-genization Treatment of Cast Ni-Fe Based Corrosion Resistant 925 Alloy
Zhan ZHAO,Jingyang LI,Jianxin DONG(),Zhihao YAO,Maicang ZHANG
School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
Download:  HTML  PDF(2004KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The oxidation behavior of the as-cast 925 superalloy were investigated in the temperature range of 1130~1190 ℃ by means of mass change measurement, X-ray diffractometer, scanning electron microscopy and energy dispersive X-ray spectroscopy. The results show that after homogenization treatment at 1160 ℃ for 20 h, the formed oxide-scale showed three-layered structure: an internal oxidation layer composed of Al2O3 and TiO2, a continuous and dense middle layer of Cr2O3 and an outmost layer of the spinel oxidation of Cr and Fe. When the homogenization time increased, the layer of Cr2O3 became thinner and the spinel oxides of Cr and Fe begun to break down and the oxidation was aggravated. Taking the oxidation behavior of the alloy during homogenization into account, the appropriate homogenization of 925 superalloy should be conducted at 1160 ℃ for 20 h.

Key words:  925 superalloy      homogenization      high temperature oxidation     
Received:  29 September 2016     
Fund: Supported by National Natural Science Foundation of China (51571012)

Cite this article: 

Zhan ZHAO,Jingyang LI,Jianxin DONG,Zhihao YAO,Maicang ZHANG. Oxidation Behavior during High Temperature Homo-genization Treatment of Cast Ni-Fe Based Corrosion Resistant 925 Alloy. Journal of Chinese Society for Corrosion and protection, 2017, 37(1): 1-8.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.189     OR     https://www.jcscp.org/EN/Y2017/V37/I1/1

Fig.1  Microstructure of dendrites of 925 alloy (a) and its magnified image (b)
Fig.2  Equilibrium phase diagram of 925 superalloy (a) and its magnification (b)
Fig.3  Segregation index of Ti and Fe after homogenisation and microstructure of interdendritic
Fig.4  Cross-sectional morphologies of the 925 alloy oxide layer after oxidation at 1160 ℃ for 5 h (a), 10 h (b) and 20 h (c)
Fig.5  Isothermal oxidation kinetics curves of 925 alloy at different temperatures in air
Fig.6  Micro-surface morphologies of 925 alloy after oxidation at 1160 ℃ for 1 h (a), 5 h (b), 20 h (c) and 50 h (d)
Fig.7  XRD spectra of oxide layer after different time at 1160 ℃ (a) and the powder desquamated after oxidation for 50 h at 1160 ℃ (b)
Fig.8  Cross-sectional morphology characterization (a) and elemental Cr (b), O (c),Fe (d), Ti (e) and Al (f) distribution of 925 alloy oxide layer after oxidation at 1160 ℃ for 1 h
Fig.9  Cross-sectional morphology characterization (a) and elemental Cr (b), O (c), Fe (d), Al (e) and Ti (f) distribution of 925 alloy oxide layer after oxidation at 1160 ℃ for 5 h
Fig.10  Cross-sectional morphology characterization (a) and elemental Cr (b), O (c), Al (d), Fe (e) and Ti (f) distribution of 925 alloy oxide layer after oxidation at 1160 ℃ for 10 h
Fig.11  Cross-sectional morphology characterization (a) and elemental Cr (b), O (c), Fe (d), Al (e) and Ti (f) distribution of 925 alloy oxide layer after oxidation at 1160 ℃ for 50 h
Fig.12  Oxidation behabior and mechanism of 925 alloy in 1160 ℃ at the early stages (a), continuous oxidation process (b, c) and the late stage (d)
Fig.13  Segregation index and thickness curves of oxide layer of 925 alloy after homogenization at 1160 ℃
[1] Ganesan P, Clatworthy E F, Harris J A.Development of a time-temperature transformation diagram for alloy 925[J]. Corrosion, 1988, 44: 827
[2] Amiri A, Bruschi S, Sadeghi M H, et al.Investigation on hot deformation behavior of Waspaloy[J]. Mater. Sci. Eng., 2013, A562: 77
[3] Puckett B, Hibner E.High strength corrosion resistant nickel base alloy 725HS for severe sour oil and gas field applications [A]. Corrosion 2003[C]. San Diego: NACE International, 2003
[4] Hibner E L, Shoemaker L E.The advantages of nickel alloys for seawater service [A]. Corrosion 2000[C]. Orlando: NACE International, 2000
[5] Francis E M, Grant B M B, da Fonseca J Q, et al. High-temperature deformation mechanisms in a polycrystalline nickel-base superalloy studied by neutron diffraction and electron microscopy[J]. Acta Mater., 2014, 74: 18
[6] Shi Z X, Yan X F, Duan C H, et al.Effects of primary aging temperature on microstructures and mechanical properties of new corrosion-resistant alloy GH925 with high strength[J]. Chin. J. Nonferrous Met., 2015, 25(7): 1822
[6] (石照夏, 颜晓峰, 段春华等. 一次时效温度对新型高强耐蚀GH925合金显微组织和力学性能的影响[J]. 中国有色金属学报, 2015, 25(7): 1822
[7] Shi Z X, Yan X F, Duan C H.Characterization of hot deformation behavior of GH925 superalloy using constitutive equation, processing map and microstructure observation[J]. J. Alloys Compd., 2015, 652: 30
[8] Mannan S, Hibner E, Puckett B.Physical metallurgy of alloys 718, 725, 725HS, 925 for service in aggressive corrosive environments[A]. Corrosion 2003[C]. San Diego: NACE International, 2003
[9] Dong J X, Li L H, Li H Y, et al.Effect of extent of homogenization on the hot deformation recrystallization of superalloy ingot in cogging process[J]. Acta Metall. Sin., 2015, 51: 1207
[9] (董建新, 李林翰, 李浩宇等. 高温合金铸锭均匀化程度对开坯热变形的再结晶影响[J]. 金属学报, 2015, 51: 1207)
[10] Jiang H, Dong J X, Zhang M C, et al.Oxidation behavior and mechanism of Inconel 740H alloy for advanced ultra-supercritical power plants between 1050 and 1170 ℃[J]. Oxid. Met., 2015, 84: 61
[11] Wang J, Wu Y, Dong J X, et al.Microstructure and homogenization of as-cast GH4700 alloy for 700 ℃ ultra-supercritical boilers[J]. Rare Met. Mater. Eng., 2013, 42: 1908
[11] (王珏, 吴赟, 董建新等. 700 ℃超超临界锅炉材料GH4700合金铸态组织及均匀化工艺[J]. 稀有金属材料与工程, 2013, 42: 1908
[12] Yang S W, Wang J Y, Sun J, et al.High temperature oxidation of the DZ4 directionally-solidified superalloy[J]. J. Harbin Eng. Univ., 2008, 29: 95
[12] (杨世伟, 王俊一, 孙杰等. DZ4定向凝固合金的抗高温氧化行为研究[J]. 哈尔滨工程大学学报, 2008, 29: 95
[13] Hussain N, Shahid K A, Khan I H, et al.Oxidation of high-temperature alloys (superalloys) at elevated temperatures in air. II[J]. Oxid. Met., 1995, 43: 363
[14] Wang M J, Xin R S, Long S S, et al.Oxidation behavior of 316LN stainless steel at solution state[J]. Trans. Mater. Heat Treat., 2012, 33(8): 74
[14] (王明家, 信瑞山, 龙珊珊等. 固溶态316LN不锈钢的氧化行为[J]. 材料热处理学报, 2012, 33(8): 74
[15] Liu F J, Zhang M C, Dong J X, et al.High temperature oxidation behavior of FGH95 alloy[J]. J. Univ. Sci. Technol. Beijing, 2007, 29: 704
[15] (刘丰军, 张麦仓, 董建新等. FGH95合金的高温氧化行为[J]. 北京科技大学学报, 2007, 29: 704
[1] XIE Dongbai, HONG Hao, WANG Wen, PENG Xiao, DUO Shuwang. Oxidation Behavior of Stainless Steel 1Cr11Ni2W2MoV in a Simulated Kerosene Combustion Environment[J]. 中国腐蚀与防护学报, 2020, 40(4): 358-366.
[2] XU Xunhu,HE Cuiqun,XIANG Junhuai,WANG Ling,ZHANG Honghua,ZHENG Xiaodong. High Temperature Oxidation Behavior of Co-20Re-25Cr-1Si Alloy in 0.1 MPa Pure Oxygen[J]. 中国腐蚀与防护学报, 2020, 40(1): 75-80.
[3] AI Peng,LIU Lixiang,LI Xiaogang,JIANG Wentao. Influence of TiAlSiN Coatings on High Temperature Oxidation Resistance of γ-TiAl Based Alloys[J]. 中国腐蚀与防护学报, 2019, 39(4): 306-312.
[4] Junjie XIA,Hongzhi NIU,Min LIU,Huazhen CAO,Guoqu ZHENG,Liankui WU. Enhancement of High Temperature Oxidation Resistance of Ti48Al5Nb Alloy via Anodic Anodization in NH4F Containing Ethylene Glycol[J]. 中国腐蚀与防护学报, 2019, 39(2): 96-105.
[5] Dongbai XIE,Youyu ZHOU,Jintao LU,Wen WANG,Shenglong ZHU,Fuhui WANG. Effect of Al/Si Content on Corrosion of Ni-based Alloys in Supercritical Water[J]. 中国腐蚀与防护学报, 2019, 39(1): 68-76.
[6] Ling WANG,Junhuai XIANG,Honghua ZHANG,Songlin QIN. High Temperature Oxidation Behavior of Three Co-20Re-xCr Alloys in 3.04×10-5 Pa Oxygen at 1000 and 1100 ℃[J]. 中国腐蚀与防护学报, 2019, 39(1): 83-88.
[7] Dongbai XIE, Youyu ZHOU, Jintao LU, Wen WANG, Shenglong ZHU, Fuhui WANG. Effect of Cr Content on Oxidation of Ni-based Alloy in Supercritical Water[J]. 中国腐蚀与防护学报, 2018, 38(4): 358-364.
[8] Yue LI, Jian WANG, Yong ZHANG, Jingang BAI, Yadi HU, Yongfeng QIAO, Caili ZHANG, Peide HAN. Analysis of Initial Oxidation Process of 2205 Duplex Stainless Steel in Closed Container at High Temperature[J]. 中国腐蚀与防护学报, 2018, 38(3): 296-302.
[9] Dongbai XIE,Guo SHAN. Rapid Identification of Liquid Accelerant in Fire Scene Environment[J]. 中国腐蚀与防护学报, 2017, 37(1): 74-80.
[10] Tiantian YANG,Jingjun XU,Yuhai QIAN,Meishuan LI. Preparation and Ultra-high Temperature Oxidation Resistance of Micro-laminated ZrC/MoSi2 Coating on Siliconized Graphite[J]. 中国腐蚀与防护学报, 2016, 36(5): 476-482.
[11] Jiapeng HUANG,Bin YANG,Hang WANG. Effect of Multiple Addition of Y, La and Ce on Oxidation Behavior of Ni-10Cr-5Al Alloy at 1000 ℃ in Air[J]. 中国腐蚀与防护学报, 2016, 36(5): 489-496.
[12] YUAN Juntao, WANG Wen, ZHU Shenglong, WANG Fuhui. Oxidation Behavior of Super 304H Steel in Steam at 700~900 ℃[J]. 中国腐蚀与防护学报, 2014, 34(3): 218-224.
[13] YUAN Juntao,WU Ximao,WANG Wen,ZHU Shenglong,WANG Fuhui. Effect of Grain Size on Oxidation of Heat-resistant Steels in High Temperature Water Steam[J]. 中国腐蚀与防护学报, 2013, 33(4): 257-264.
[14] FU Guangyan, YANG Ningning, WANG Yanyan. AIR OXIDATION OF Fe-Y ALLOYS AT 800℃[J]. 中国腐蚀与防护学报, 2010, 30(6): 453-456.
[15] GUO Pingyi SHAO Yong LI Lei. HIGH TEMPERATURE OXIDATION OF Fe3Al COATING PREPARED BY HIGH ENERGY MICRO-ARC ALLOYING PROCESS[J]. 中国腐蚀与防护学报, 2009, 29(6): 431-436.
No Suggested Reading articles found!