Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (6): 495-503    DOI: 10.11902/1005.4537.2016.179
Current Issue | Archive | Adv Search |
Progress on Materials and Protection Technologies for Marine Propeller
Ke LI1,2, Xiaofan ZHAI1, Fang GUAN1,2, Zhouhai QIAN3, Meixia ZHANG1,2, Jizhou DUAN1(), Baorong HOU1
1 Key Laboratory of Marine Environmental Corrosion and Biofouling, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
2 University of Chinese Academy of Sciences, Beijing 100049, China
3 State Grid Zhejiang Electric Power Company Electric Power Research Institute, Hangzhou 310006, China
Download:  HTML  PDF(1285KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

This paper focuses on the nowadays research status of corrosion and biofouling phenomena occurred on marine propeller as well as the relevant protection methods, namely external protection technologies for the propellers in service and new corrosion-resistant materials for the propeller fabrication. The protection technologies of marine propeller include mainly cathodic protection technologies, anticorrosion coatings, and electrolytic antifouling technologies, which are suitable for the in-service propellers. Except for common copper alloys, new materials applied to making propeller developed rapidly, such as stainless steels and composite materials which have attached much attention. Several protection methods and new materials for marine propellers are introduced in the paper. Finally, the trend of research and development of materials and protection technologies for marine propeller in the future was also pointed out.

Key words:  marine propeller      protective technology      corrosion-resistant material      stainless steel      composite material     
Received:  20 September 2016     
ZTFLH:  U664.33  

Cite this article: 

Ke LI, Xiaofan ZHAI, Fang GUAN, Zhouhai QIAN, Meixia ZHANG, Jizhou DUAN, Baorong HOU. Progress on Materials and Protection Technologies for Marine Propeller. Journal of Chinese Society for Corrosion and protection, 2017, 37(6): 495-503.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.179     OR     https://www.jcscp.org/EN/Y2017/V37/I6/495

Fig.1  Cavitation process of metals[21]
Fig.2  Mechanisms of cavitation: (a) shock-wave mechanism; (b) micro-fluidic mechanism[21]
Coating Type Color Dry film thickness μm Wet film thickness μm Construction method
1 Pure epoxy paint with aluminium powders Aluminum 80 134 Fog spray
2 Pure epoxy paint with aluminium powders Aurichalceous 70 117 Series spray
3 Elastic-contamination-free transition paint Pink 100 176 Series spray
4 Fluoropolymer- contamination-free antifouling paint Red 150 203 Series spray
Table 1  Main ingredients of matching coatings on a certain kind of propeller
Grade Heat treatment σb / MPa δ / % HB A Marine corrosion fatigue resistance
Arcolck1000 Quench +Tempering >950 330~380 >M Stainless steel
MFC Solid solution 531 55 140 17~19
MSS Solid solution +Prescription 882~980 10~20 260~350 49~98 40
MCRS 950 ℃/3 h AC+600 ℃/3 h AC 882~980 10~30 200~300 49~98 30
SAF2507 Quench 550 25 290
Table 2  Mechanical properties and seawater corrosion resistance of stainless steel propellers[57-61]
[1] Bertram V.Practical Ship Hydrodynamics[M]. 2nd Ed. Amsterdam: Elsevier, 2012
[2] Hou B R, Li X G, Ma X M, et al.The cost of corrosion in China[J]. NPJ Mater. Degradat., 2017, 1: 4
[3] Little B, Wagner P, Mansfeld F.An overview of microbiologically influenced corrosion[J]. Electrochim. Acta, 1992, 37: 2185
[4] Lackenby H.Resistance of ships, with special reference to skin friction and hull surface condition[J]. Proc. Inst. Mech. Eng., 1962, 176(1962): 981
[5] Mosaad M A A R. Marine propeller roughness penalties [D]. Newcastle: Newcastle University, 1986
[6] Milne A.Roughness and drag from the marine paint chemist’s viewpoint [A]. International Workshop on Marine Roughness and Drag[C]. London, 1990
[7] Li H T, Xu L K, Lin C G, et al.Corrosion resistance of Ni-P alloys coating on copper-manganese-aluminium alloy in seawater[J]. Equip. Environ. Eng., 2008, 5(6): 112(李海涛, 许立坤, 蔺存国等. 高锰铝青铜基体上化学镀Ni-P合金镀层在海水中耐蚀性的研究[J]. 装备环境工程, 2008, 5(6): 112)
[8] Pantazopoulos G, Papaefthymiou S.Failure and fracture analysis of austenitic stainless steel marine propeller shaft[J]. J. Fail. Anal. Prev., 2015, 15: 762
[9] Bertoglio C, Rizzo C M.Survey on fatigue strength of cast bronzes intended for marine propellers[J]. Fatigue Fract. Eng. Mater. Struct., 2016, 39: 793
[10] Marsh G.A new start for marine propellers?[J]. Reinf. Plast., 2004, 78: 34
[11] Chiachio M, Chiachio J, Rus G.Reliability in composites-a selective review and survey of current development[J]. Composites, 2012, 43B: 902
[12] Mouritz A P, Bannister M K, Falzon P J, et al.Review of applications for advanced three-dimensional fibre textile composites[J]. Composites, 1999, 30A: 1445
[13] Hong Y, Hao L F, Wang P C, et al.Structural design and multi-objective evaluation of composite bladed propeller[J]. Polym. Polym. Compos., 2014, 22: 275
[14] Meng R S, Liu H J, Fang Z G.Aluminous air propeller composite anti-corrosion technology[J]. Ship Sci. Technol., 2006, 28(5): 90(孟润生, 刘宏君, 方志刚. 铝质空气螺旋桨综合防腐蚀技术[J]. 舰船科学技术, 2006, 28(5): 90)
[15] Pham-Thanh N, Van Tho H, Yum Y J.Evaluation of cavitation erosion of a propeller blade surface made of composite materials[J]. J. Mech. Sci. Technol., 2015, 29: 1629
[16] Franc J P, Michel J M.Fundamentals of Cavitation[M]. Netherlands: Springer, 2006
[17] Carlton J S.Marine Propellers and Propulsion[M]. Amsterdam: Butterworth-Heinemann, 2011
[18] Hong S, Wu Y P, Zheng J F, et al.Cavitation erosion behavior and mechanism of HVOF sprayed WC-10Co-4Cr Coating in 3.5 wt% NaCl solution[J]. Trans. Indian Inst. Met., 2015, 68: 151
[19] Maksimovi? V M, Deve?erski A B, Do?en A, et al.Comparative study on cavitation erosion resistance of A356 alloy and A356FA5 composite[J]. Trans. Indian Inst. Met., 2017, 70: 97
[20] Cervone A, Bramanti C, Rapposelli E, et al.Thermal cavitation experiments on a NACA 0015 hydrofoil[J]. J. Fluids Eng., 2006, 128: 326
[21] Li X G.Corrosion and Protection of Materials [M]. Changsha: Central South University Press, 2009: 94(李晓刚. 材料腐蚀与防护 [M]. 长沙: 中南大学出版社, 2009: 94)
[22] Konno A, Wakabayashi K, Yamaguchi H, et al.On the mechanism of the bursting phenomena of propeller tip vortex cavitation[J]. J. Mar. Sci. Technol., 2002, 6: 181
[23] Ryuichi M S.Translated by Fang Z C. Cavitation erosion of marine propeller[J]. Trans. Mater. Sci., 1979, 16(2): 41(佐藤隆一著. 方正春译. 船用螺旋桨的空泡腐蚀[J]. 材料科学, 1979, 16(2): 41)
[24] Carlton J S.Marine Propellers and Propulsion[M]. 2nd Ed. Amsterdam: Elsevier, 2007: 521
[25] Chang Y C, Hu C N, Tu J C, et al.Experimental investigation and numerical prediction of cavitation incurred on propeller surfaces[J]. J. Hydrodyn., 2010, 22B: 764
[26] Ju D Y, Han B.Investigation of water cavitation peening-induced microstructures in the near-surface layer of pure titanium[J]. J. Mater. Process. Technol., 2009, 209: 4789
[27] Karimi A, Martin J L.Cavitation erosion of materials[J]. Int. Met. Rev., 2013, 31: 1
[28] The Chinese Shipbuilding Engineering Society Academic Committee of ship mechanics. The present situation and the latest development trend of ship mechanics [A]. Conference on ship hydrodynamics and the entry of the Chinese shipping academia to ITTC30 anniversary[C]. Hangzhou, 2008: 25(中国造船工程学会船舶力学学术委员会. 船舶力学的现状与最新发展趋势 [A]. 2008年船舶水动力学学术会议暨中国船舶学术界进入ITTC30周年纪念会论文集[C]. 杭州, 2008: 25)
[29] Yang Z C, Bai X Q, Jiang H, et al.Analysis of biofouling occurrence trends on ship hull surface[J]. Ship Eng., 2016, 38(2): 29(杨宗澄, 白秀琴, 姜欢等. 船体表面海洋污损生物附着规律分析[J]. 船舶工程, 2016, 38(2): 29)
[30] Lackenby H.Resistance of ships, with special reference to skin friction and hull surface condition[J]. Proc. Inst. Mech. Eng., 1962, 176: 981
[31] Shi C, Zhang L.Technical analysis of ship propeller electrolysis anti-fouling device[J]. China Water Transp., 2014, 14(2): 126(石崇, 张陆. 船舶螺旋桨电解防污装置方案技术浅析[J]. 中国水运, 2014, 14(2): 126)
[32] Zheng X T, Wang D, Chen J F.Experimental study of ultrasonic marine anti-biofouling technique[J]. Technol. Acoust., 2015, 34: 525(郑晓涛, 王丹, 陈景峰. 超声波防海生物技术试验研究 [J]. 声学技术, 2015, 34: 525)
[33] Jin J H.Ship corrosion and corrosion protection of zinc[J]. Navigation, 1984, (3): 27(金俊洪. 舰船腐蚀与锌极防蚀[J]. 航海, 1984, (3): 27)
[34] Ma J L, Wen J B.Corrosion analysis of Al-Zn-In-Mg-Ti-Mn sacrificial anode alloy[J]. J. Alloy. Compd., 2010, 496: 110
[35] Liang H, Du M, Zhang Y H.Polarization performance of two aluminium alloy sacrificial anodes[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 153(梁虎, 杜敏, 张有慧. 铝合金牺牲阳极极化性能研究[J]. 中国腐蚀与防护学报, 2014, 34: 153)
[36] Xu L K, Ma L, Xing S H, et al.Review on cathodic protection for marine structures[J]. Mater. China, 2014, 33: 106(许立坤, 马力, 邢少华等. 海洋工程阴极保护技术发展评述[J]. 中国材料进展, 2014, 33: 106)
[37] Li C J, Du M.Research and development of cathodic protection for steels in deep seawater[J]. J. Chin. Soc. Corros. Prot., 2013, 33: 10(李成杰, 杜敏. 深海钢铁材料的阴极保护技术研究及发展[J]. 中国腐蚀与防护学报, 2013, 33: 10)
[38] Huang Y C, Jin X D.Study of stress corrosion and cathodic protection on Mn-Cu alloy propeller[J]. Corros. Prot., 1990, 11: 90(黄永昌, 金晓东. 锰铜合金螺旋浆应力腐蚀与阴极保护研究[J]. 腐蚀与防护, 1990, 11: 90)
[39] Christodoulou C, Glass G, Webb J, et al.Assessing the long term benefits of Impressed Current Cathodic Protection[J]. Corros. Sci., 2010, 52: 2671
[40] von Baeckmann W, Bohnes H, Franke G, et al. Handbook of Cathodic Corrosion Protection [M]. 3rd Ed. Houston: Gulf Professional Publishing, 1997
[41] Flemming H C, Griebe T, Schaule G.Antifouling strategies in technical systems—A short review[J]. Water Sci. Technol., 1996, 34: 517
[42] Burgess J G, Boyd K G, Armstrong E, et al.The development of a marine natural product-based antifouling paint[J]. Biofouling, 2003, 19(Suppl.): 197
[43] Kiil S, Dam-Johansen K, Weinell C E, et al.Seawater-soluble pigments and their potential use in self-polishing antifouling paints: simulation-based screening tool[J]. Prog. Org. Coat., 2002, 45: 423
[44] Todd J S, Zimmerman R C, Crews P, et al.The antifouling activity of natural and synthetic phenol acid sulphate esters[J]. Phytochemistry, 1993, 34: 401
[45] Zhao H T, Lu W Z, Li J, et al.Degradation behavior of solvent-free epoxy coatings in simulated flowing sea water with sand by different flow rates[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 329(赵洪涛, 陆卫中, 李京等. 无溶剂环氧防腐涂层在不同流速模拟海水冲刷条件下的失效行为[J]. 中国腐蚀与防护学报, 2017, 37: 329)
[46] Pan Y, Zhang S P, Zhou J L, et al.Controlling factors and progress of low surface energy silicone antifouling coatings[J]. Paint Coat. Ind., 2009, 39(12): 58(潘莹, 张三平, 周建龙等. 有机硅低表面能防污涂料控制因素与研究进展[J]. 涂料工业, 2009, 39(12): 58)
[47] Shen L, Gao J, Song D D, et al.Multifunctional water-based surface tolerant coating and its protective performance[J]. Chin. J. Eng., 2015, 37: 1594(申琳, 高瑾, 宋东东等. 多功能水性低表面处理涂料及涂层防护性能[J]. 工程科学学报, 2015, 37: 1594)
[48] Jin C Z, Zhang S, Chen S P.Discussion of anti-corrosion and anti-fouling painting process for propeller[J]. Mar. Technol., 2013, (4): 39(金承泽, 张松, 陈松培. 船舶螺旋桨防腐防污涂装工艺的探讨[J]. 造船技术, 2013, (4): 39)
[49] Matsushita K, Ogawa K.Ship hull and propeller coatings using non-polluting and anti-fouling paint [R]. London, UK: Marine Management Holdings, 1993
[50] Kong D M, Guo Z J.Water electrolysis of sodium hypochlorite generator[J]. Petro-Chem. Equip., 1989, 18(2): 34(孔德明, 郭志军. 海水电解次氯酸钠发生装置[J]. 石油化工设备, 1989, 18(2): 34)
[51] Fang Z C.Development of the stainless steel of marine propeller[J]. Dev. Appl. Mater., 2002, 17(6): 43(方正春. 船舶螺旋桨用不锈钢的发展[J]. 材料开发与应用, 2002, 17(6): 43)
[52] Song Q N, Bao Y F, Jiang Y F, et al.Technical Note: Corrosion and cavitation erosion behaviors of the Thermo-mechanically Affected Zone (TMAZ) in a friction stir processed Ni-Al bronze[J]. Corrosion, 2016, 72: 1438
[53] Yang R J.Copper alloy propeller material for foreign ships[J]. Int. Ship Technol., 1981, (9): 1(杨汝钧. 国外舰船用铜合金螺旋桨材料[J]. 国外舰船技术(材料类), 1981, (9): 1)
[54] Baker S, Carr E, Laithwaite E H, et al.Copper zincaluminiumferrous metalsconcrete: Corrosion of metals in buildings london symposium, MARCH, 1957[J]. Anti-Corros. Method. Mater., 1957, 4(5): 170
[55] Castro M L, Romero R.Transformations during continuous cooling of a β-Cu-22.72Al-3.55Be (at.%) alloy[J]. Scr. Mater., 1999, 42(2): 157
[56] Ritchie I G, Sprungmann K W, Sahoo M.Internal friction in so noston-a high damping mn/cu-based alloy for marine propeller applications[J]. Le J. De Phys. Colloques, 1985, 46(C-10): 409
[57] Qian Y S.The corrosion behavior of martensitic stainless steel in different states [D]. Tiayuan: Taiyuan University of Technology, 2012(钱玉水. 马氏体不锈钢在不同态下的腐蚀性能研究 [D]. 太原: 太原理工大学, 2012)
[58] Ueda S.Development of high strength steel for propeller (Mitsubishi corrosion resistant steel)[J]. Dev. Appl. Mater., 1979, (10): 17(植田昭二. 用于螺旋桨的高强度钢 (三菱耐蚀钢) 的发展[J]. 材料开发与应用, 1979, (10): 17
[59] Kawazoe T, Abe T, Nishikido S, et al.Development of mitsubishi marine propeller[J]. Mar. Eng., 1988, 23(4): 257
[60] Wang G, Guo Y D, Guo L, et al.Development of duplex stainless steel, characteristics and applications[J]. Sci. Technol. Innovat., 2015, (7): 91(王刚, 郭幼丹, 郭雷等. 双相不锈钢的发展、特点及其应用[J]. 科技与创新, 2015, (7): 91)
[61] Luo Y Z.Development status and prospect of stainless steel propeller[J]. Nonrust, 2006,(1): 8, 2006, (1): 8)
[62] Bechly M E, Clausen P D.Structural design of a composite wind turbine blade using finite element analysis[J]. Comput. Struct., 1997, 63: 639
[63] Khan A M, Adams D O, Dayal V, et al.Effects of bend-twist coupling on composite propeller performance[J]. Mech. Compos. Mater. Struct., 2000, 7: 383
[64] Kee Y J, Kim J H.Vibration characteristics of initially twisted rotating shell type composite blades[J]. Compos. Struct., 2004, 64: 151
[65] Young Y L.Fluid-structure interaction analysis of flexible composite marine propellers[J]. J. Fluids Struct., 2008, 24: 799
[66] Mouritz A P, Gellert E, Burchill P, et al.Review of advanced composite structures for naval ships and submarines[J]. Compos. Struct., 2001, 53: 21
[67] Huang X Y, Liu B.Current situation and development of warship structure material[J]. Ship Boat, 2004, (3): 21(黄晓艳, 刘波. 舰船用结构材料的现状与发展[J]. 船舶结构, 2004, (3): 21)
[68] Lin C C, Lee Y J, Hung C S.Optimization and experiment of composite marine propellers[J]. Compos. Struct., 2009, 89: 206
[69] MIIT. World's largest composite propeller[J]. Dual Use Technol. Prod., 2003, (7): 20(工信. 世界上最大复合材料螺旋桨[J]. 军民两用技术与产品, 2003, (7): 20)
[70] Young Y L.Time-dependent hydroelastic analysis of cavitating propulsors[J]. J. Fluids Struct., 2007, 23: 269
[71] Friesch J, Kim, K H, Andersen P, et al. The specialist committee on cavitation induced pressures, final report and recommendations to the 23rd ITTC [A]. The 23rd International Towing Tank Conference[C]. Venice, 2002: 417
[72] Ji B, Luo X W, Wang X, et al.Unsteady numerical simulation of cavitating turbulent flow around a highly skewed model marine propeller[J]. J. Fluids Eng., 2011, 133: 011102
[73] Zhang S, Zhu X, Sun H T, et al.Review of researches on composite marine propellers[J]. Adv. Mech., 2012, 42: 620(张帅, 朱锡, 孙海涛等. 船用复合材料螺旋桨研究进展[J]. 力学进展, 2012, 42: 620)
[74] Guan X.Cavitation erosion behavior of titanium and Ti-6Al-4V alloy [D]. Tianjin: Tianjin University, 2010(关昕. 钛及Ti-6Al-4V合金的空蚀行为研究 [D]. 天津: 天津大学, 2010)
[75] Yang X D.Development situation of cast titanium alloy propeller[J]. Dev. Appl. Mater., 1994, 9(5): 40(杨学东. 铸造钛合金螺旋桨材料发展概况[J]. 材料开发与应用, 1994, 9(5): 40)
[76] Yang Y L, Luo Y Y, Zhao H Z, et al.Research and application status of titanium alloys for warships in China[J]. Rare Met. Mater. Eng., 2011, 40(Suppl.2): 538(杨英丽, 罗媛媛, 赵恒章等. 我国舰船用钛合金研究应用现状[J]. 稀有金属材料与工程, 2011, 40(增刊2): 538)
[77] Pan X.A new casting alloys for marine propeller was developed in US[J]. Funct. Mater. Inform., 2007, 4(2): 60(潘雄. 美开发出船螺旋桨用新型铸造合金[J]. 功能材料信息, 2007, 4(2): 60)
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[3] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[4] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[5] MA Mingwei, ZHAO Zhihao, JING Siwen, YU Wenfeng, GU Yien, WANG Xu, WU Ming. Corrosion Behavior of 17-4 PH Stainless Steel in Simulated Seawater Containing SRB[J]. 中国腐蚀与防护学报, 2020, 40(6): 523-528.
[6] ZHAO Baijie, FAN Yi, LI Zhenzhen, ZHANG Bowei, CHENG Xuequn. Crevice Corrosion Behavior of 316L Stainless Steel Paired with Four Different Materials[J]. 中国腐蚀与防护学报, 2020, 40(4): 332-341.
[7] HU Yuting, DONG Pengfei, JIANG Li, XIAO Kui, DONG Chaofang, WU Junsheng, LI Xiaogang. Corrosion Behavior of Riveted Joints of TC4 Ti-Alloy and 316L Stainless Steel in Simulated Marine Atmosphere[J]. 中国腐蚀与防护学报, 2020, 40(2): 167-174.
[8] QIN Yueqiang, ZUO Yong, SHEN Miao. Corrosion Inhibition of 316L Stainless Steel in FLiNaK-CrF3/CrF2 Redox Buffering Molten Salt System[J]. 中国腐蚀与防护学报, 2020, 40(2): 182-190.
[9] HE Zhuang,WANG Xingping,LIU Zihan,SHENG Yaoquan,MI Mengxin,CHEN Lin,ZHANG Yan,LI Yuchun. Passivation and Pitting of 316L and HR-2 Stainless Steel in Hydrochloric Acid Liquid Membrane Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 17-24.
[10] WU Dongcai,HAN Peide. Effects of Moderate Temperature Aging Treatment on Corrosion Resistance of SAF2304 DuplexStainless Steel[J]. 中国腐蚀与防护学报, 2020, 40(1): 51-56.
[11] LUO Hong,GAO Shujun,XIAO Kui,DONG Chaofang,LI Xiaogang. Effect of Magnetron Sputtering Process Parameters on CrN Films on 304 Stainless Steel and TheirCorrosion Behavior[J]. 中国腐蚀与防护学报, 2019, 39(5): 423-430.
[12] FU Anqing,ZHAO Mifeng,LI Chengzheng,BAI Yan,ZHU Wenjun,MA Lei,XIONG Maoxian,XIE Junfeng,LEI Xiaowei,LV Naixin. Effect of Laser Surface Melting on Microstructure and Performance of Super 13Cr Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(5): 446-452.
[13] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[14] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[15] Han FENG,Zhigang SONG,Xiaohan WU,Hui LI,Wenjie ZHENG,Yuliang ZHU. Relationship Between Selective Corrosion Behavior and Duplex Structure of 022Cr25Ni7Mo4N Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(2): 138-144.
No Suggested Reading articles found!