Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (6): 575-582    DOI: 10.11902/1005.4537.2016.178
Current Issue | Archive | Adv Search |
Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution
Jun WANG1, Chao FENG1,2, Bicao PENG1,2, Yi XIE1,2, Minghua ZHANG3, Tangqing WU3()
1 State Grid Hunan Electric Power Corporation Research Institute, Changsha 410007, China
2 Hunan Xiangdian Boiler & Pressure Vessel Test Center Ltd., Changsha 410007, China;
3 School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China
Download:  HTML  PDF(8195KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The weld joint of S450EW steel was prepared by metal active gas arc (MAG) welding. The corrosion behavior of different zones of the welded joint was studied via electrochemical test and scanning electron microscope (SEM). The results showed that the microstructures were mainly composed of granular bainite of the base metal zone and weld zone, while the microstructure of the heat affected zone was composed of a mixture of ferrite and pearlite. Uniform corrosion was the typical corrosion pattern in the weld zone, and local corrosion occurred in the base metal zone and heat affected zone. Besides, severer local corrosion was observed in the heat affected zone. The better corrosion resistance of the weld zone may ascribed to the effect of high Ni content of the welding rod, while the high corrosion rate of the heat affected zone may be due to the dual phase microstructure of ferrite and pearlite.

Key words:  S450EW steel      welded joint      atmospheric corrosion      electrochemical impedance spectroscopy     
Received:  19 September 2016     
ZTFLH:  TG172.4  
Fund: Supported by National Natural Science Foundation of China (51601164 and 51471176) and China Postdoctoral Science Foundation (2017M622594)

Cite this article: 

Jun WANG, Chao FENG, Bicao PENG, Yi XIE, Minghua ZHANG, Tangqing WU. Corrosion Behavior of Weld Joint of S450EW Steel in NaHSO3 Solution. Journal of Chinese Society for Corrosion and protection, 2017, 37(6): 575-582.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.178     OR     https://www.jcscp.org/EN/Y2017/V37/I6/575

Material C Si Mn S P Cu Cr Ni Fe
S450EW 0.04 0.12 0.41 0.0023 0.0079 0.33 3.49 0.24 Bal.
TH650EW-II 0.03 0.36 0.42 0.0100 0.0040 0.22 1.50 4.03 Bal.
Table 1  Chemical compositions of S450EW steel and TH650EW-II welding wire(mass fraction / %)
Fig.1  Welding sequence of the weld joint
Fig.2  Metallographs of the S450EW weld joint: (a, b) base metal, (c, d) heat affected zone, (e, f) weld metal
Fig.3  Surface morphology of the base metal zone after corrosion (a) and the magnified image of area I in Fig.3a (b)
Fig.4  Surface morphology of the heat affected zone after corrosion (a) and the magnified image of area II in Fig.4a (b)
Fig.5  Surface morphology of the weld zone after corrosion (a) and the magnified image of area III in Fig.5a (b)
Fig.6  General (a) and high-magnified (b) views of the surface of the base metal zone after removal of the corrosion product
Fig.7  General (a) and high-magnified (b) views of the surface of the heat affected zone after removal of the corrosion product
Fig.8  General (a) and high-magnified (b) views of the surface of the base metal zone after removal of the corrosion product
Fig.9  Open circuit potentials of different zones in the weld joint as a function of time
Fig.10  Linear polarization resistances of different zones in the weld joint as a function of time
Fig.11  Tafel plots of the different zone in the weld joint after immersion in 0.01 mol/L NaHSO3 solution for 12 d
Weld Joint Ecorr(SCE) / V bc / mVdec-1 ba / mVdec-1 Icorr / Acm-2
Base metal -0.569 -339.5 330.2 1.09×10-4
Heat affected zone -0.571 -338.8 331.5 1.08×10-4
Weld zone -0.544 -341.7 348.1 9.24×10-5
Table 2  Fitting results of Tafel polarization curves of different zones in the weld joint
Fig.12  Nyquist plots of the different zone after immersion in 0.01 mol/L NaHSO3 solution for 6 h (a), 1 d (b), 4 d (c) and 12 d (d)
[1] Hou B R.The Cost of Corrosion in China [M]. Beijing: Science Press, 2017(侯保荣著. 中国腐蚀成本 [M]. 北京: 科学出版社, 2017)
[2] Wang C, Cao G W, Pan C, et al.Atmospheric corrosion of carbon steel and weathering steel in three environments[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 39(汪川, 曹公旺, 潘辰等. 碳钢、耐候钢在3种典型大气环境中的腐蚀规律研究[J]. 中国腐蚀与防护学报, 2016, 36: 39)
[3] Cao C N.Natural Environment Corrosion of Materials in China [M]. Beijing: Chemical Inustry Press, 2005(曹楚南. 中国材料的自然环境腐蚀 [M]. 北京: 化学工业出版社, 2005)
[4] Yang J H, Liu Q Y, Wang X D, et al.A review on the progress of investigation on weathering steel and its rust layer[J]. J. Chin. Soc. Corros. Prot., 2007, 27: 367(杨景红, 刘清友, 王向东等. 耐大气腐蚀钢及其腐蚀产物的研究概况[J]. 中国腐蚀与防护学报, 2007, 27: 367)
[5] Zhu R L, Zhang Z M, Wang J Q, et al.Review on SCC crack growth behavior of dissimilar metal welds for nuclear power reactors[J]. J. Chin. Soc. Corros. Prot., 2015, 35: 189(朱若林, 张志明, 王俭秋等. 核电异种金属焊接接头的应力腐蚀裂纹扩展行为研究进展[J]. 中国腐蚀与防护学报, 2015, 35: 189)
[6] Liu Z Y, Wan H X, Li C, et al.Comparative study on corrosion of X65 pipeline steel welded joint in simulated shallow and deep sea environment[J]. J. Chin. Soc. Corros. Prot., 2014, 34: 321(刘智勇, 万红霞, 李禅等. X65钢焊接接头在模拟浅表海水和深海环境中的腐蚀行为对比[J]. 中国腐蚀与防护学报, 2014, 34: 321)
[7] Das C R, Jena P K.A study of corrosion of welded steel specimens in a marine atmosphere, with and without protective coatings[J]. Corros. Sci., 1983, 23: 1135
[8] Reboul M C, Dubost B, Lashermes M.The stress corrosion susceptibility of aluminium alloy 7020 welded sheets[J]. Corros. Sci., 1985, 25: 999
[9] Bai Q, Zou Y, Kong X F, et al.Electrochemical corrosion behavior in seawater of weld joints of CCSE40 steel prepared by underwater wet welding with austenitic welding rod[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 427(白强, 邹妍, 孔祥峰等. 奥氏体焊条水下湿法焊接CCSE40钢在海水中的腐蚀电化学行为研究[J]. 中国腐蚀与防护学报, 2016, 36: 427)
[10] Wang Z H, Huang Y H, Li J, et al.Effect of Nb on corrosion behavior of simulated weld HAZs of X80 pipeline steel in simulated seawater environments corresponding to shallow sea and deep sea[J]. J. Chin. Soc. Corros. Prot., 2016, 36: 604(王子豪, 黄运华, 李佳等. Nb对X80钢焊接热影响区在模拟海水中腐蚀行为的影[J]. 中国腐蚀与防护学报, 2016, 36: 604)
[11] Zhang Z Y, Wang S L, Zhang H Y, et al.Corrosion behavior of joints of Mg-alloy AZ31 fabricated by friction stir welding[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 117(张子阳, 王善林, 章恒瑜等. AZ31镁合金搅拌摩擦焊接头腐蚀行为[J]. 中国腐蚀与防护学报, 2017, 37: 117)
[12] Liu D Q, Ke L M, Xu W P, et al.Intergranular corrosion behavior of friction-stir welding joint for 20 mm thick plate of 7075 Al-alloy[J]. J. Chin. Soc. Corros. Prot., 2017, 37: 293(刘德强, 柯黎明, 徐卫平等. 7075厚板铝合金搅拌摩擦焊接头晶间腐蚀行为研究[J]. 中国腐蚀与防护学报, 2017, 37: 293)
[13] Kwok C T, Fong S L, Cheng F T, et al.Pitting and galvanic corrosion behavior of laser-welded stainless steels[J]. J. Mater. Process. Technol., 2006, 176: 168
[14] Lin C, Li X G, Dong C F.Pitting and galvanic corrosion behavior of stainless steel with weld in wet-dry environment containing Cl-[J]. J. Univ. Sci. Technol. Beijing Miner. Metall. Mater., 2007, 14: 517
[15] Ma H C, Liu Z Y, Du C W, et al.Stress corrosion cracking of E690 steel as a welded joint in a simulated marine atmosphere containing sulphur dioxide[J]. Corros. Sci., 2015, 100: 627
[16] Pujar M G, Parvathavarthini N, Dayal R K.Influence of solution-annealing and stress-relieving on the pitting corrosion resistance of modified 316N SS weld metals: A study using EN technique[J]. Mater. Chem. Phys., 2010, 123: 407
[17] Nishimura T, Katayama H, Noda K, et al.Effect of Co and Ni on the corrosion behavior of low alloy steels in wet/dry environments[J]. Corros. Sci., 2000, 42: 1611
[18] Hao L, Zhang S X, Dong J H, et al.Evolution of corrosion of MnCuP weathering steel submitted to wet/dry cyclic tests in a simulated coastal atmosphere[J]. Corros. Sci., 2012, 58: 175
[1] FAN Yi,CHEN Linheng,CAI Jiaxing,DAi Qinqin,MA Hongchi,CHENG Xuequn. Corrosion Behavior of Hot-rolled AH36 Plate in Indoor Storage Environment[J]. 中国腐蚀与防护学报, 2020, 40(1): 10-16.
[2] PAN Chengcheng,MA Chao,XIA Dahai. Estimation for Relevance of Atmospheric Corrosion Initiation with Surface Texture of Several Metallic Materials by Electron Backscattering Diffraction[J]. 中国腐蚀与防护学报, 2019, 39(6): 495-503.
[3] ZHAO Jinbin,ZHAO Qiyue,CHEN Linheng,HUANG Yunhua,CHENG Xuequn,LI Xiaogang. Effect of Different Surface Treatments on Corrosion Behavior of 300M Steel in Qingdao Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(6): 504-510.
[4] HUANG Chen,HUANG Feng,ZHANG Yu,LIU Haixia,LIU Jing. Galvanic Corrosion Behavior for Weld Joint of High Strength Weathering Steel[J]. 中国腐蚀与防护学报, 2019, 39(6): 527-535.
[5] DENG Junhao,HU Jiezhen,DENG Peichang,WANG Gui,WU Jingquan,WANG Kun. Effect of Oxide Scales on Initial Corrosion Behavior of SPHC Hot Rolled Steel in Tropical Marine Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(4): 331-337.
[6] SUN Xiaoguang,HAN Xiaohui,ZHANG Xingshuang,ZHANG Zhiyi,LI Gangqing,DONG Chaofang. Corrosion Resistance and Environmentally-friendly Chemical Passivation of Welded Joints for Ultra-low Carbon Austenitic Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(4): 345-352.
[7] Xia WANG,Shuaifei REN,Daixiong ZHANG,Huan JIANG,Yue GU. Inhibition Effect of Soybean Meal Extract on Corrosion of Q235 Steel in Hydrochloric Acid Medium[J]. 中国腐蚀与防护学报, 2019, 39(3): 267-273.
[8] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Equivalent Electrical Circuits Fitting of Electrochemical Impedance Spectroscopy for Rebar Steel Corrosion of Coral Aggregate Concrete[J]. 中国腐蚀与防护学报, 2019, 39(3): 260-266.
[9] Yongwei SUN,Yuping ZHONG,Lingshui WANG,Fangxiong FAN,Yatao CHEN. Corrosion Behavior of Low-alloy High Strength Steels in a Simulated Common SO2-containing Atmosphere[J]. 中国腐蚀与防护学报, 2019, 39(3): 274-280.
[10] Bo DA,Hongfa YU,Haiyan MA,Zhangyu WU. Influence of Inhibitors on Reinforced Bar Corrosion of Coral Aggregate Seawater Concrete[J]. 中国腐蚀与防护学报, 2019, 39(2): 152-159.
[11] Xiuling LAN,Guangming LIU,Jiesheng ZHOU,Zhilei LIU,Shusen PENG,Maodong LI. Preparation and Properties of Organosilicone/SiO2Hybrid Sol Modified Acrylic Resin[J]. 中国腐蚀与防护学报, 2018, 38(6): 601-606.
[12] Peichang DENG, Quanbing LIU, Ziyun LI, Gui WANG, Jiezhen HU, Xie WANG. Corrosion Behavior of X70 Pipeline Steel in the Tropical Juncture Area of Seawater-Sea Mud[J]. 中国腐蚀与防护学报, 2018, 38(5): 415-423.
[13] Li WANG, Chunyun GUO, Kui XIAO, Tuerxun·Silayiding, Chaofang DONG, Xiaogang LI. Corrosion Behavior of Carbon Steels Q235 and Q450 in Dry Hot Atmosphere at Turpan District for Four Years[J]. 中国腐蚀与防护学报, 2018, 38(5): 431-437.
[14] Sanxi DENG, Xiaoyu YAN, Ke CHAI, Jinyi WU, Hongwei SHI. Effect of Pseudomonas sp. on Decomposition and Anticorrosion Behavior of Polysiloxane Varnish Coating[J]. 中国腐蚀与防护学报, 2018, 38(4): 326-332.
[15] Haijiao CAO, Yinghua WEI, Hongtao ZHAO, Chenxi LV, Yaozong MAO, Jing LI. Effect of Preheating Time on Protective Performance of Fusion Bonded Epoxy Powder Coating on Q345 Steel II: Failure Behavior Analysis of Coating[J]. 中国腐蚀与防护学报, 2018, 38(3): 255-264.
No Suggested Reading articles found!