Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (1): 16-22    DOI: 10.11902/1005.4537.2016.150
Current Issue | Archive | Adv Search |
Corrosion Behavior of 316 Stainless Steel in Mixed Molten Nitrate Salts with and without Rare Earth Element
Ming ZHU(),Guyue ZHOU,Huihui ZHANG
College of Material Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
Download:  HTML  PDF(913KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Ternary nitrate salts are widely used as thermal storage medium for solar thermal power generation system, but the corrosion damage of the heat storage pipe caused by the molten nitrate salts is significantly severe. In order to improve the corrosion resistance of the pipeline material, the corrosion behavior of 316 stainless steel in mixed molten nitrate-salts KNO3-NaNO2-NaNO3 without and with addition of 1‰ (mass fraction) and 2‰Y2O3 was comparatively studied by means of electrochemical method and SEM/EDS. The results showed that the addition of Y2O3 can reduce the corrosion rate of stainless steel. The corrosion current density decreased from 9.47 mAcm-2 to 7.13 and 3.73 mAcm-2 respectively with the addition of 1‰ and 2‰Y2O3 and correspondingly, the transfer resistance of 316 stainless steel in mixed molten nitrate salts was enhanced. It can be concluded that the addition of trace of rare earth element is an effective way to improve the corrosion resistance of 316 stainless steel in the mixed molten nitrate salts.

Key words:  electrochemistry      316 stainless steel      ternary nitrate salt      rare earth element      corrosion     
Received:  09 September 2016     
Fund: Supported by National Natural Science Foundation of China (51201131), Cultivation Fund of Xi'an University of Science and Technology (6310214005) and Doctoral Promoter Fund of Xi'an University of Science and Technology (6310115012)

Cite this article: 

Ming ZHU,Guyue ZHOU,Huihui ZHANG. Corrosion Behavior of 316 Stainless Steel in Mixed Molten Nitrate Salts with and without Rare Earth Element. Journal of Chinese Society for Corrosion and protection, 2017, 37(1): 16-22.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.150     OR     https://www.jcscp.org/EN/Y2017/V37/I1/16

Fig.1  Potentiodynamic polarization curves for 316 stainless steel in molten nitrate at 450 ℃
Molten nitrate ba / mVdec-1 bc / mVdec-1 Ecorr / mV Icorr / mAcm-2
HITEC+1‰Y2O3 603.11 -1519.2 -22.54 3.73
HITEC+2‰Y2O3 651.67 -1499.6 -98.04 7.13
HITEC 711.99 -1493.5 -19.70 9.47
Table 1  Fitting results of potentiodynamic curves for the 316 stainless steel corroded in containing different proportion of Y2O3 mixture molten nitrate
Fig.2  Nyquist (a) and Bode (b) diagrams of 316 stainless steel in mixture molten nitrate at 450 ℃
Fig.3  Nyquist (a) and Bode (b) diagrams of 316 stainless steel in mixture molten nitrate with 1‰Y2O3 at 450 ℃
Fig.4  Nyquist (a) and Bode (b) diagrams of 316 stainless steel in mixture molten nitrate with 2‰Y2O3 at 450 ℃
Fig.5  Equivalent circuits for fitting EIS
Time / h Rs / Ωcm2 C / Fcm-2 Rt / Ωcm2 Y0,dl / sαΩ-1cm-2 n Ra / Ωcm2
5 1.11 1.02×10-2 313.2 4.18×10-4 0.75 572.0
11 1.11 1.02×10-2 286.8 4.41×10-4 0.74 691.8
46 1.2 8.39×10-3 295.2 4.15×10-4 0.74 789.8
54 1.27 7.40×10-3 221.3 5.09×10-4 0.72 742.9
77 1.26 6.45×10-3 207.6 5.17×10-4 0.72 812.8
100 1.26 1.16×10-4 155.3 2.61×10-3 0.60 421.2
Table 2  Fitting results of EIS for 316 stainless steel in mixture molten nitrate
Time / h Rs / Ωcm2 C / Fcm-2 Rt / Ωcm2 Y0,dl / sαΩ-1cm-2 n Ra / Ωcm2
2 1.27 1.62×10-3 665.6 9.47×10-5 0.63 30.28
15 1.32 7.08×10-4 538.3 5.79×10-3 0.72 178.50
35 1.55 8.03×10-4 654.0 7.03×10-4 0.71 52.00
55 1.31 8.32×10-4 438.1 1.24×10-2 0.70 729.90
75 1.34 1.40×10-2 406.2 7.42×10-4 0.71 711.00
136 1.24 7.27×10-4 413.1 1.41×10-2 0.71 621.70
Table 3  Fitting results of EIS for 316 stainless steel in mixture molten nitrate with 1‰Y2O3
Time / h Rs / Ωcm2 C / Fcm-2 Rt / Ωcm2 Y0,dl / snΩ-1cm-2 n Ra / Ωcm2
4 1.10 1.01×10-2 301.5 4.77×10-4 0.71 431.7
40 1.20 7.95×10-3 253 3.98×10-4 0.76 505.2
105 1.11 1.64×10-2 374.3 7.10×10-4 0.73 550.9
110 1.24 1.50×10-2 358.5 6.98×10-4 0.73 529.2
130 1.11 1.90×10-2 379.1 7.11×10-4 0.73 481.7
140 1.19 1.81×10-2 413.9 7.28×10-4 0.73 516.6
Table 4  Fitting results of EIS for 316 stainless steel in mixture molten nitrate with 2‰Y2O3
Fig.6  Relationships between electron transfer resistance and corrosion time of 316 stainless steel in mixture molten nitrate with different proportion of Y2O3
Fig.7  Cross-sectional morphologies and elemental distribution maps of the corrosion products formed on 316 stainless steel in mixture molten nitrate salts at 450 ℃ for 150 h
[1] Fernández A G, Cortes M, Fuentealba E, et al.Corrosion properties of a ternary nitrate/nitrite molten salt in concentrated solar technology[J]. Renew. Energy, 2015, 80: 177
[2] Vignarooban K, Xu X H, Arvay A, et al.Heat transfer fluids for concentrating solar power systems-A review[J]. Appl. Energy, 2015, 146: 383
[3] Shen X Y, Ding J, Peng Q, et al.Application of high temperature molten salt to solar thermal power[J]. Guangdong Chem. Ind., 2007, 34(11): 49
[3] (沈向阳, 丁静, 彭强 等. 高温熔盐在太阳能热发电中的应用 [J]. 广东化工, 2007, 34(11): 49)
[4] Yang X P, Yang X X, Ding J, et al.Recent advances in the study of solar energy high-temperature heat power generation and accumulation technologies[J]. J. Eng. Therm. Energ. Power, 2011, 26(1): 1
[4] (杨小平, 杨晓西, 丁静等. 太阳能高温热发电蓄热技术研究进展[J]. 热能动力工程, 2011, 26(1): 1)
[5] Vignarooban K, Xu X, Arvay A, et al.Heat transfer fluids for concentrating solar power system-A review[J]. Appl. Energy, 2015,146: 396
[6] Cheng W J, Chen D J, Wang C J.High-temperature corrosion of Cr-Mo steel in molten LiNO3-NaNO3-KNO3 eutectic salt for thermal energy storage[J]. Sol. Energy Mater. Sol. Cell., 2015, 132: 563
[7] Fernández A G, Galleguillos H, Fuentealba E, et al.Corrosion of stainless steels and low-Cr steel in molten Ca(NO3)2-NaNO3-KNO3 eutectic salt for direct energy storage in CSP plants[J]. Sol. Energy Mater. Sol. Cell., 2015, 141: 7
[8] Kruizenga A, Gil D.Corrosion of iron stainless steels in molten nitrate salt[J]. Energy Procedia., 2014, 49: 878
[9] Fernández A G, Lasanta M I, Pérez F J.Molten salt corrosion of stainless steels and low-Cr steel in CSP plants[J]. Oxid. Met., 2012, 78: 329
[10] McConohy G, Kruizenga A. Molten nitrate salts at 600 and 680 ℃: Thermophysical property changes and corrosion of high-temperature nickel alloys[J]. Sol. Energy, 2014, 103: 242
[11] Fernández A G, Grágeda M, Galleguillos H.Impurity influence in physico-chemical and corrosion properties of Chilean solar nitrates[J]. Energy Procedia., 2014, 49: 607
[12] Shin D, Banerjee D.Enhanced thermal properties of SiO2 nanocomposite for solar thermal energy storage applications[J]. Int. J. Heat Mass Transf., 2015, 84: 898
[13] Tiznobaik H, Shin D.Enhanced specific heat capacity of high-temperature molten salt-based nanofluids[J]. Int. J. Heat Mass Transf.,2013, 57: 542
[14] Ma H F.Study on corrosion behaviors and protection of Inconel 625 alloys in chloride molten salts [D]. Xi'an: Xi'an University of Science and Technology, 2015
[14] (马宏芳. Inconel625合金在氯化物熔盐中腐蚀行为研究 [D]. 西安: 西安科技大学, 2015)
[15] Wang Z H, Zhu M, Wang M J, et al.Corrosion behavior of Inconel 625 alloy in molten carbonate[J]. Rare Met. Mater. Eng., 2016, 45: 677
[15] (王志华, 朱明, 王明静等. Inconel 625合金在熔融碳酸盐中的腐蚀行为[J]. 稀有金属材料与工程, 2016, 45: 677)
[16] Niu Y, Zhang J Q, Wu W T.Characters of porcelain reference electrode in molten salts[J]. J. Chin. Soc. Corros. Prot., 1990, 10(3): 221
[16] (牛焱, 张鉴清, 吴维?. 用于高温熔盐的参比电极[J]. 中国腐蚀与防护学报, 1990, 10(3): 221)
[17] Wang F P, Kang W L, Jing H M, et al.The Theory, Method and Application of Corrosion Electrochemistry [M]. Beijing: Chemical Industry Press, 2008: 220
[17] (王凤平, 康万利, 敬和民等. 腐蚀电化学原理、方法及应用 [M]. 北京: 化学工业出版社, 2008: 220)
[18] Zeng C L, Wang W, Wu W T.Electrochemical impedance models for molten salt corrosion[J]. Corros. Sci., 2001, 43: 787
[19] Cao C N, Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002: 20
[19] (曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002: 20)
[20] Liu Y L, Chen S Q, Huang G B, et al.Study on hot corrosion behavior of stainless steel in molten nitrate salt[J]. Guangdong Chem. Ind., 2016, 44(2): 1
[20] (刘义林, 陈素清, 黄国波等. 硝酸熔盐对不锈钢材料腐蚀行为的研究[J]. 广东化工, 2016, 44(2): 1)
[21] Wang M J, Xin R S, Long S S, et al.Oxidation behavior of 316LN stainless steel at solution state[J]. Trans. Mater. Heat Treat., 2012, 33(8): 74
[21] (王明家, 信瑞山, 龙珊珊等. 固溶态316LN不锈钢的氧化行为[J]. 材料热处理学报, 2012, 33(8): 74)
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[5] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[6] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[7] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[8] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[9] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[10] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[11] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[12] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[13] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[14] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!