Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (6): 652-658    DOI: 10.11902/1005.4537.2016.120
Orginal Article Current Issue | Archive | Adv Search |
Effect of Static Magnetic Field on Adhesion of Sulfate Reducing Bacteria Biofilms on 304 Stainless Steel
Yalin LV1,Bijuan ZHENG1,Hongwei LIU1,Fuping XIONG1,Hongfang LIU1,2(),Yulong HU3
1. Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
2. Shenzhen Institute of Huazhong University of Science and Technology, Shenzhen 518000, China
3. College of Science, Naval University of Engineering, Wuhan 430033, China
Download:  HTML  PDF(828KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Effect of the presence of static magnetic field on the microorganism induced corrosion of 304 stainless steel (304SS) was studied. Results show that the SMF of 150 mT did not significantly affect the growth curve of planktonic SRB, but it delayed the formation of sessile SRB. The results of electrochemical measurements and surface analysis indicated that the formation of SRB biofilms could be inhibited and the adhesion of SRB biofilms could be declined on the steel due to the presence of SMF, while the effect of the SMF of 4 mT was stronger than that of 150 mT. X-ray photoelectron spectroscopy (XPS) found that the dominated corrosion product was FeS in the absence of SMF, in other words, the presence of SMF promoted the formation of iron oxides. It is concluded that the static magnetic field (SMF) could be a promising method to prevent the adhesion of sulfate reducing bacteria (SRB) biofilms on steel surface, and therefore to inhibit SRB related microbiological influenced corrosion (MIC).

Key words:  static magnetic field      sulfate reducing bacteria      biofilm      microbiological corrosion     

Cite this article: 

Yalin LV,Bijuan ZHENG,Hongwei LIU,Fuping XIONG,Hongfang LIU,Yulong HU. Effect of Static Magnetic Field on Adhesion of Sulfate Reducing Bacteria Biofilms on 304 Stainless Steel. Journal of Chinese Society for Corrosion and protection, 2016, 36(6): 652-658.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.120     OR     https://www.jcscp.org/EN/Y2016/V36/I6/652

Fig.1  Growth curves of planktonic SRB and sessile SRBunder 150 mT static magnetic field
Fig.2  Polarization curves of 304SS under static magneticfields of 0, 4, 150 mT
SMF mT ESCE mV lg IAcm-2 bamVdec-1 bc mVdec-1
0 -217 -6.0 4338 2824
4 -223 -6.5 6407 3368
150 -224 -5.8 6883 3269
Table 1  Fitted data of polarization curves of 304SS under static magnetic fields of 0, 4 and 150 mT
Fig.3  EIS plots of 304SS after immersed in SRB solutionunder different static magnetic fields for 1 d
Fig.4  Equivalent circuit for EIS
Fig.5  SEM images of 304SS after immersion in SRB solution under 0 mT (a), 4 mT (b) and 150 mT (c) static magnetic fields for 1 d
Fig.6  EIS of 304SS with SRB biofilm formed after exposure under 0, 4, 150 mT static magnetic fields for 0.5 h (a) and 1.5 h (b)
Magnetic field / mT Time / h Rf / kΩcm2
0 0.5 51.2
1.5 45.7
4 0.5 8.3
1.5 8.8
150 0.5 30.1
1.5 12.5
Table 2  Fitted values of Rf based on EIS of 304SS with mature SRB biofilm after exposure under 0, 4, 150 mT static magnetic fields for 0.5 and 1.5 h
Fig.7  SEM images of 304SS with mature SRB biofilm after exposure for 0.5 h under static magnetic fields of 0 mT (a), 4 mT (b) and 150 mT (c)
Fig.8  S2p (a~c) and Fe2p3/2 (d~f) XPS spectra of corrosion products on 304SS with mature SRB biofilm after exposure for 0.5 h under static magnetic fields of 0 mT (a, d), 4 mT (b, e) and 150 mT (c, f)
SMF / mT E (Fe2p3/2) / eV Specie E (S2p) / eV Specie
0 710.38 FeS 168.38 SO42-
707.48 FeS2 160.66 FeS
713.66 Fe2(SO4)3 162.84 FeS2
--- --- 161.66 S2-
4 706.32 FeS2 168.70 SO42-
710.32 FeS 160.10 FeS
708.29 Fe3O4 161.87 S2-
150 710.82 Fe2O3 169.10 Fe2(SO4)3
707.58 FeS2 161.29 S2-
--- --- 162.86 Na2S2O3
--- —— 160.27 FeS
Table 3  Electronic binding energies corresponding to S- and Fe-containing species
[1] Yuan S, Liang B, Zhao Y, et al.Surface chemistry and corrosion behaviour of 304 stainless steel in simulated seawater containing inorganic sulphide and sulphate-reducing bacteria[J]. Corros. Sci., 2013, 74: 353
[2] Venzlaff H, Enning D, Srinivasan J, et al.Accelerated cathodic reaction in microbial corrosion of iron due to direct electron uptake by sulfate-reducing bacteria[J]. Corros. Sci., 2013, 66: 88
[3] Beese P, Venzlaff H, Srinivasan J, et al.Monitoring of anaerobic microbially influenced corrosion via electrochemical frequency modulation[J]. Electrochem. Acta, 2013, 105: 239
[4] Wu T, Xu J, Sun C, et al.Microbiological corrosion of pipeline steel under yield stress in soil environment[J]. Corros. Sci., 2014, 88: 291
[5] Zheng B, Zhao Y, Xue W, et al.Microbial influenced corrosion behavior of micro-arc oxidation coating on AA2024[J]. Surf. Coat. Technol., 2013, 216: 100
[6] Liu H, Zheng B, Xu D, et al.Effect of sulfate-reducing bacteria and iron-oxidizing bacteria on the rate of corrosion of an aluminum alloy in a central air-conditioning cooling water system[J]. Ind. Eng. Chem. Res., 2014, 53: 7840
[7] Sowards J W, Williamson C H D, Weeks T S, et al. The effect of Acetobacter sp and a sulfate-reducing bacterial consortium from ethanol fuel environments on fatigue crack propagation in pipeline and storage tank steels[J]. Corros. Sci., 2014, 79: 128
[8] Li K, Whitfield M, Van Vliet K J. Beating the bugs: Roles of microbial biofilms in corrosion[J]. Corros. Rev., 2013, 31: 73
[9] Dong Z H, Liu T, Liu H F.Influence of EPS isolated from thermophilic sulphate-reducing bacteria on carbon steel corrosion[J]. Biofouling, 2011, 27: 487
[10] Stadler R, Fuerbeth W, Harneit K, et al.First evaluation of the applicability of microbial extracellular polymeric substances for corrosion protection of metal substrates[J]. Electrochim. Acta, 2008, 54: 91
[11] Fathy M, Badawi A, Mazrouaa A M, et al.Styrene n-vinylpyrrolidone metal-nanocomposites as antibacterial coatings against sulfate reducing bacteria[J]. Mater. Sci. Eng., 2013, C33: 4063
[12] Wen J, Zhao K, Gu T, et al.A green biocide enhancer for the treatment of sulfate-reducing bacteria (SRB) biofilms on carbon steel surfaces using glutaraldehyde[J]. Int. Biodeterior. Biodegrad., 2009, 63: 1102
[13] Street C N, Gibbs A.Eradication of the corrosion-causing bacterial strains desulfovibrio vulgaris and desulfovibrio desulfuricans in planktonic and biofilm form using photo disinfection[J]. Corros. Sci., 2010, 52: 1447
[14] Xu D, Li Y, Gu T.A synergistic D-tyrosine and tetrakis hydroxymethyl phosphonium sulfate biocide combination for the mitigation of an SRB biofilm[J]. World J. Microb. Biotechnol., 2012, 28:3067
[15] Zheng B, Li K, Liu H, et al.Effects of magnetic fields on microbiologically influenced corrosion of 304 stainless steel[J]. Ind. Eng. Chem. Res., 2013, 53: 48
[16] Lu Z, Yang W.In situ monitoring the effects of a magnetic field on the open-circuit corrosion states of iron in acidic and neutral solutions[J]. Corros. Sci., 2008, 50: 510
[17] Hu J, Dong C, Li X, et al.Effects of applied magnetic field on corrosion of beryllium copper in NaCl solution[J]. J. Mater. Sci. Technol., 2010, 26: 355
[18] Ru?inskien A, Bikul?ius G, Gudavi?iūt L, et al.Magnetic field effect on stainless steel corrosion in FeCl3 solution[J]. Electrochem. Commun., 2002, 4: 86
[19] Sueptitz R, Tschulik K, Uhlemann M, et al.Effect of high gradient magnetic fields on the anodic behaviour and localized corrosion of iron in sulphuric acid solutions[J]. Corros. Sci., 2011, 53: 3222
[20] Sueptitz R, Tschulik K, Uhlemann M, et al.Magnetic field effects on the active dissolution of iron[J]. Electrochim. Acta, 2011, 56:5866
[21] Fojt L, Stra?ák L, Vetterl V R, et al.Comparison of the low-frequency magnetic field effects on bacteria Escherichia coli, Leclercia adecarboxylata and staphylococcus aureus[J]. Bioelectrochemistry, 2004, 63: 337
[22] Novák J, Stra?ák L, Fojt L, et al.Effects of low-frequency magnetic fields on the viability of yeast saccharomyces cerevisiae[J]. Bioelectrochemistry, 2007, 70: 115
[23] Filipi? J, Kraigher B, Tepu? B, et al.Effects of low-density static magnetic fields on the growth and activities of wastewater bacteria escherichia coli and pseudomonas putida[J]. Bioresour. Technol., 2012, 120: 225
[24] Ji W, Huang H, Deng A, et al.Effects of static magnetic fields on escherichia coli[J]. Micron, 2009, 40: 894
[25] Niu C, Geng J, Ren H, et al.The strengthening effect of a static magnetic field on activated sludge activity at low temperature[J]. Bioresour. Technol., 2013, 150: 156
[26] Jajte J, Grzegorczyk J, Zmy?lony M, et al.Effect of 7 mT static magnetic field and iron ions on rat lymphocytes: apoptosis, necrosis and free radical processes[J]. Bioelectrochemistry, 2002, 57: 107
[27] Mohammed R R, Ketabchi M R, McKay G. Combined magnetic field and adsorption process for treatment of biologically treated palm oil mill effluent (POME)[J]. Chem. Eng. J., 2014, 243: 31
[28] K?iklavová L, Truhlá? M, ?kodová P, et al.Effects of a static magnetic field on phenol degradation effectiveness and Rhodococcus erythropolis growth and respiration in a fed-batch reactor[J]. Bioresour. Technol., 2014, 167: 510
[29] Di Campli E, Di Bartolomeo S, Grande R, et al.Effects of extremely low-frequency electromagnetic fields on Helicobacter pylori biofilm[J]. Curr. Microbiol., 2010, 60: 412
[30] Chua L Y, Yeo S H.Surface bio-magnetism on bacterial cells adhesion and surface proteins secretion[J]. Colloid. Surf. B: Biointerfaces, 2005, 40: 45
[1] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[2] CHEN Jiachen,WANG Zhongwei,QIAO Lijie,YAN Yu. Interaction between Friction-wear and Corrosion in Special Environment[J]. 中国腐蚀与防护学报, 2019, 39(5): 404-410.
[3] Meng MEI, Hongai ZHENG, Huida CHEN, Ming ZHANG, Daquan ZHANG. Effect of Sulfate Reducing Bacteria on Corrosion Behavior of Cu in Circulation Cooling Water System[J]. 中国腐蚀与防护学报, 2017, 37(6): 533-539.
[4] Hongwei LIU,Hongfang LIU. Research Progress of Corrosion of Steels Induced by Iron Oxidizing Bacteria[J]. 中国腐蚀与防护学报, 2017, 37(3): 195-206.
[5] Yu TENG,Xu CHEN,Chuan HE,Yichuang WANG,Bing WANG. Effect of Microstructure on Corrosion Behavior of X70 Steel in 3.5%NaCl Solution with SRB[J]. 中国腐蚀与防护学报, 2017, 37(2): 168-174.
[6] Jinheng LUO,Congmin XU,Dongping YANG. Stress Corrosion Cracking of X100 Pipeline Steel in Acid Soil Medium with SRB[J]. 中国腐蚀与防护学报, 2016, 36(4): 321-327.
[7] Boqiang SONG,Xu CHEN,Guiyang MA,Rui LIU. Effect of SRB on Corrosion Behavior of X70 Pipeline Steel in Near-neutral pH Solution[J]. 中国腐蚀与防护学报, 2016, 36(3): 212-218.
[8] ZHANG Fan, LIU Hongwei, CHEN Bi, LIU Hongfang. Corrosion Inhibition of Imidazoline for Carbon Steel in CO2-saturated Artificial Sewages with Sulfate Reduction Bacteria[J]. 中国腐蚀与防护学报, 2015, 35(2): 156-162.
[9] WANG Yongxia, XIANG Hongliang, YANG Caiping, LIU Dong. Corrosion Resistance of Copper-bearing Duplex Stainless Steel in Culture Medium without and with Bacteria[J]. 中国腐蚀与防护学报, 2014, 34(6): 558-565.
[10] CHEN Bi, ZHENG Bijuan, ZHANG Fan, LIU Hongfang. Corrosion Behavior of HSn70-1 Copper Alloy in SRB Containing Medium in Atatic Magnetic Field[J]. 中国腐蚀与防护学报, 2014, 34(4): 339-345.
[11] NIE Yuanyuan, DUAN Jizhou, DU Min, HOU Baorong. Influence of NaN3 on Cathodic Oxygen Reduction Induced by Microbe-assisted Catalysis on Surface of 316LSS in Seawater[J]. 中国腐蚀与防护学报, 2014, 34(4): 359-365.
[12] LIU Tong, ZHANG Yanfei, CHEN Xu, WANG Dan, CHEN Yu, WANG Guangfu. Effect of SRB on Corrosion Behavior of X70 Steel in a Simulated Soil Solution[J]. 中国腐蚀与防护学报, 2014, 34(2): 112-118.
[13] DU Xiangqian,DUAN Jizhou,ZHAI Xiaofan,LUAN Xin,ZHANG Jie,HOU Baorong. Corrosion Behavior of 316L Stainless Steel Influenced by Iron-reducing Bacteria Shewanella Algae Biofilms[J]. 中国腐蚀与防护学报, 2013, 33(5): 363-370.
[14] LIU Bin, DUAN Jizhou, HOU Baorong. MICROBIOLOGICALLY INFLUENCED CORROSION OF 316L SS BY MARINE BIOFILMS IN SEAWATER[J]. 中国腐蚀与防护学报, 2012, 32(1): 48-53.
[15] DUAN Dongxia, CHEN Xiguang, LIN Cunguo. 907A STEEL CORROSION IN ARTIFICIAL SULFATE REDUING BACTERIA BIOFILM[J]. 中国腐蚀与防护学报, 2011, 31(6): 453-456.
No Suggested Reading articles found!