Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2018, Vol. 38 Issue (1): 47-53    DOI: 10.11902/1005.4537.2016.119
Orginal Article Current Issue | Archive | Adv Search |
Composition and Semi-conductive Characteristic of Passive Film Formed on γΝ-phase in a Borax Buffer Solution
Guangyu LI1(), Mingkai LEI2
1 Department of Mechanical and Electrical Engineering, Yingkou Institute of Technology, Yingkou 115014, China
2 School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024, China
Download:  HTML  PDF(2556KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

A high-nitrogen containing face-centered-cubic phase (γΝ) formed on AISI 304L austenitic stainless steel surface via plasma source nitriding. The chemical composition of the passive film on the γΝ-phase was characterized by means of AES and XPS, which formed in a borax buffer solution with pH value of 8.4. The semi-conductive characteristic of the passive film on the γΝ-phase was investigated by Mott-Schottky analysis. The results showed that the passive film on the γΝ-phase was of a two-layered structure: of which the outer portion composed of iron hydroxide/oxides and chromium hydroxide/oxides exhibiting n-type semi-conductive and inner portion composed of mainly chromium oxides with a little chr-omium- and iron-nitrides exhibiting p-type semi-conductive. In comparison with the passive film on the plain stainless steel, the passive film on the γΝ-phase is much densified with lower donor- and acceptor-density and more negative of the flat band potential, thus leading to the lowering corrosion rate.

Key words:  plasma source nitriding      high-nitrogen face-centered-cubic phase      passive film      corrosion resistance property      semi-conductive characteristic     
Received:  20 August 2016     
ZTFLH:  TG156.8  
  TG172.1  
Fund: Supported by Scientific Research Foundation of Yingkou Institute of Technology (QNL201709)

Cite this article: 

Guangyu LI, Mingkai LEI. Composition and Semi-conductive Characteristic of Passive Film Formed on γΝ-phase in a Borax Buffer Solution. Journal of Chinese Society for Corrosion and protection, 2018, 38(1): 47-53.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.119     OR     https://www.jcscp.org/EN/Y2018/V38/I1/47

Fig.1  Optical micrograph of the modified layer
Fig.2  Concentration-depth profiles of the elements in the modified layer (应在图中标出渗氮层/基体界面位置)
Fig.3  XRD patterns of 304L austenitic stainless steel before and after surface modification
Fig.4  Anodic polarization curves of the original stainless steel and the γΝ phase layer
Fig.5  Auger depth concentration profiles of the passive films formed on the original stainless steel (a) and the γΝ phase layer (b)
Fig.6  XPS of the passive film formed on the original stainless steel after sputtering for O1s (a1, b1, c1), Cr2p3/2 (a2, b2, c2, d1), Fe2p3/2 (a3, b3, c3, d2) and Ni2p3/2 (b4, c4, d4) at 0 s (top surface) (a1~a3), 20 s (2 nm) (b1~b4), 50 s (5 nm) (c1~c4) and 70 s (7 nm) (d1~d3)
Fig.7  XPS of the passive film formed on the γN phase layer after sputtering for N1s (a1, b1, c1, d1), O1s (a2, b2, c2, d2) Cr2p3/2 (a3, b3, c3, d3), Fe2p3/2 (a4, b4, c4, d4) and Ni2p3/2 (b5, c5, d5) at 0 s (top surface) (a1~a4), 20 s (2 nm) (b1~b5), 50 s (5 nm) (c1~c5) and 70 s (7 nm) (d1~d5)
Fig.8  Mott-Schottky plots of the passive film formed on the original stainless steel and γN phase layer
Material ND / cm-3 NA / cm-3 Efb / mV(SCE)
304L SS 7.5×1020 9.7×1020 -440
γN phase 6.9×1019 1.9 ×1020 -530
Table 1  Donor density, acceptor density and flat-band potential of passive films formed on the original stainless steel and γΝ phase layer
[1] Zhang Z L, Bell T.Structure and corrosion resistance of plasma nitrided stainless steel[J]. Surf. Eng., 1985, 1: 131
[2] Lei M K, Zhang Z L.Microstructure and corrosion resistance of plasma source ion nitrided austenitic stainless steel[J]. J. Vac. Sci. Technol., 1997, 15A: 421
[3] Picard S, Memet J B, Sabot R, et al.Corrosion behaviour, microhardness and surface characterisation of low energy, high current ion implanted austenitic stainless steel[J]. Mater. Sci. Eng., 2001, A303: 163
[4] Li G Y, Wang Z Y, Lei M K.Transition of wear mechanisms of plasma source nitrided AISI 316 austenitic stainless steel against ceramic counterface[J]. J. Tribol., 2012, 134: 011601
[5] Christiansen T, Somers M A J. On the crystallographic structure of S-phase[J]. Scr. Mater., 2004, 50: 35
[6] Lei M K, Liang J.X-ray diffraction of high nitrogen face centred cubic phase formed on nitrogen modified austenitic stainless steel[J]. Surf. Eng., 2010, 26: 305
[7] Thaiwatthana S, Li X Y, Dong H, et al.Comparison studies on properties of nitrogen and carbon S phase on low temperature plasma alloyed AISI 316 stainless steel[J]. Surf. Eng., 2002, 18: 433
[8] Zhu X M, Lei M K.Pitting corrosion resistance of high nitrogen f. c. c. phase in plasma source ion nitrided austenitic stainless steel[J]. Surf. Coat. Technol., 2000, 131: 400
[9] Gontijo L C, Machado R, Kuri S E, et al.Corrosion resistance of the layers formed on the surface of plasma-nitrided AISI 304L steel[J]. Thin Solid Films, 2006, 515: 1093
[10] Lei M K, Zhu X M.Role of nitrogen in pitting corrosion resistance of a high-nitrogen face-centered-cubic phase formed on austenitic stainless steel[J]. J. Electrochem. Soc., 2005, 152: B291
[11] Fossati A, Borgioli F, Galvanetto E, et al.Corrosion resistance properties of glow-discharge nitrided AISI 316L austenitic stainless steel in NaCl solutions[J]. Corros. Sci., 2006, 48: 1513
[12] Flis J, Kuczynska M.Impedance of Cr18Ni10 stainless steel in sulphate solutions after a low-temperature plasma nitriding[J]. Mater. Corros., 2003, 54: 953
[13] Mu?oz-Castro A E, Valencia-Alvarado R, Barocio S R, et al. Electrochemical corrosion properties of AISI 304 SS treated by low, intermediate and high temperature plasma immersion ion implantation in a toroidal vessel[J]. Surf. Coat. Technol., 2005, 200: 569
[14] Lebrun J P, Poirier L, Hertz D, et al.Environmentally friendly low temperature plasma processing of stainless steel components for nuclear industry[J]. Surf. Eng., 2002, 18: 423
[15] Belo M D C, Walls M, Hakiki N E, et al. Composition, structure and properties of the oxide films formed on the stainless steel 316L in a primary type PWR environment[J]. Corros. Sci., 1998, 40: 447
[16] Diercks D R, Shack W J, Muscara J.Overview of steam generator tube degradation and integrity issues[J]. Nucl. Eng. Des., 1999, 194: 19
[17] Han E-H, Wang J Q, Wu X Q, et al.Corrosion mechanisms of stainless steel and nickel base alloys in high temperature high pressure water[J]. Acta Metall. Sin., 2010, 46: 1379(韩恩厚, 王俭秋, 吴欣强等. 核电高温高压水中不锈钢和镍基合金的腐蚀机制[J]. 金属学报, 2010, 46: 1379)
[18] Piao T H, Park S M.Spectroelectrochemical studies of passivation and transpassive breakdown reactions of stainless steel[J]. J. Electrochem. Soc., 1997, 144: 3371
[19] Hakiki N E, Boudin S, Rondot B, et al.The electronic structure of passive films formed on stainless steels[J]. Corros. Sci., 1995, 37: 1809
[20] Fujimoto S, Tsuchiya H.Semiconductor properties and protective role of passive films of iron base alloys[J]. Corros. Sci., 2007, 49: 195
[21] Macdonald D D.The point defect model for the passive state[J]. J. Electrochem. Soc., 1992, 139: 3434
[22] Ningshen S, Mudali U K, Mittal V K, et al.Semiconducting and passive film properties of nitrogen-containing type 316LN stainless steels[J]. Corros. Sci., 2007, 49: 481
[1] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[2] ZHANG Rui,LI Yu,GUAN Lei,WANG Guan,WANG Fuyu. Effect of Heat Treatment on Electrochemical Corrosion Behavior of Selective Laser Melted Ti6Al4V Alloy[J]. 中国腐蚀与防护学报, 2019, 39(6): 588-594.
[3] Shaokun YAN,Dajiang ZHENG,Jiang WEI,Guangling SONG,Lian ZHOU. Electrochemical Activation of Passivated Pure Titanium in Artificial Seawater[J]. 中国腐蚀与防护学报, 2019, 39(2): 123-129.
[4] Dong LIU,Hongliang XIANG,Chunyu LIU. XPS Analysis of Corrosion Product Scale on Surface of Silver-bearing Antibacterial Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2018, 38(6): 533-542.
[5] Ming LIU,Xuequn CHENG,Xiaogang LI,Tianjian LU. Corrosion Resistance Mechanisms of Passive Films Formed on Low Alloy Rebar Steels in Liquor of Cement Extract[J]. 中国腐蚀与防护学报, 2018, 38(6): 558-564.
[6] Zihan LIAO, Bo SONG, Ze REN, Chuan HE, Xu CHEN. Electrochemical Corrosion Behavior of Matrix and Weld Seam of X70 Steel in Na2CO3+NaHCO3 Solutions[J]. 中国腐蚀与防护学报, 2018, 38(2): 158-166.
[7] Tianyi ZHANG,Junsheng WU,Hailong GUO,Xiaogang LI. Influence of HSO3- on Passive Film Composition and Corrosion Resistance of 2205 Duplex Stainless Steelin Simulated Seawater[J]. 中国腐蚀与防护学报, 2016, 36(6): 535-542.
[8] Jianchun ZHANG,Jingyang JIANG,Yang LI,Jinjie SHI,Longfei ZUO,Danqian WANG,Han MA. Passive Films Formed on Seawater Corrosion Resistant Rebar 00Cr10MoV in Simulated Concrete Pore Solutions[J]. 中国腐蚀与防护学报, 2016, 36(5): 441-449.
[9] Xinqiang WU,Yao FU,Wei KE,Song XU,Bing FENG,Botao HU,Jiazheng LU. Corrosion Behavior of High Nitrogen Austenitic Stainless Steels[J]. 中国腐蚀与防护学报, 2016, 36(3): 197-204.
[10] Yangheng LI,Yu ZUO,Yuming TANG,Xuhui ZHAO. Pitting Corrosion Behavior of Q235 Carbon Steel in NaHCO3+NaCl Solution under Strain[J]. 中国腐蚀与防护学报, 2016, 36(3): 238-244.
[11] ZHAO Yang,LIANG Ping,SHI Yanhua,WANG Bingxin,LIU Feng,WU Zhanwen. Comparison of Passive Films on X100 and X80 Pipeline Steels in NaHCO3 Solution[J]. 中国腐蚀与防护学报, 2013, 33(6): 455-462.
[12] LIU Zuojia,CHENG Xuequn,LI Xiaogang,LIU Xiaohui. Application of PDM (Point Defect Model) on 2205 Duplex Stainless Steel[J]. 中国腐蚀与防护学报, 2013, 33(2): 90-96.
[13] FAN Lin,LI Xiaogang,DU Cuiwei,LIU Zhiyong. ELECTROCHEMICAL BEHAVIOR OF PASSIVE FILMS FORMED ON X80 PIPELINE STEEL IN VARIOUS CONCENTRATED NaHCO3 SOLUTIONS[J]. 中国腐蚀与防护学报, 2012, 32(4): 322-326.
[14] QIAO Yanxin, REN Ai, LIU Feihua. ELECTROCHEMICAL BEHAVIOR OF ALLOY 690 IN NaCl SOLUTION[J]. 中国腐蚀与防护学报, 2012, 32(2): 146-150.
[15] ZHAO Yi, WANG Fu. EFFECT OF HEAT TREATMENT PROCESSES ON SEAWATER CORROSION RESISTANCE PROPERTY OF 17-4PH STEEL[J]. 中国腐蚀与防护学报, 2011, 31(6): 473-477.
No Suggested Reading articles found!