Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (4): 315-321    DOI: 10.11902/1005.4537.2016.115
Orginal Article Current Issue | Archive | Adv Search |
Research Progress of Scanning Vibrating Electrode Technique in Field of Corrosion
Penghui ZHANG1(), Kun PANG1, Kangkang DING1, Xiangfeng KONG2, Xin PENG3
1 State Key Laboratory for Marine Corrosion and Protection, Luoyang Ship Material Research Institute, Qingdao 266101, China
2 College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
3 Naval Architacture & Marine Engineering College, Shandong Jiaotong University, Weihai 264200, China
Download:  HTML  PDF(2463KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In this paper, the basic principle of scanning vibrating electrode technique is simply interpreted. Especially, the research progress of scanning vibrating electrode technique in the field related with localized corrosion of materials, inhibitor and evaluation of coating performance is illustrated. In the end, the relevant limitations are summarized for the application of the technique.

Key words:  scanning vibrating electrode technique (SVET)      microzone      localized corrosion      inhibitor      coating     
Received:  12 August 2016     
ZTFLH:  TG174.3  
About author: 

These authors contributed equally to this work.

Cite this article: 

Penghui ZHANG, Kun PANG, Kangkang DING, Xiangfeng KONG, Xin PENG. Research Progress of Scanning Vibrating Electrode Technique in Field of Corrosion. Journal of Chinese Society for Corrosion and protection, 2017, 37(4): 315-321.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.115     OR     https://www.jcscp.org/EN/Y2017/V37/I4/315

Fig.1  Schematic representation of SVET test[8]
Fig.2  Ionic current lines obtained at different distances above the galvanic couples[11]
Fig.3  SVET test result of weld joint after 20 minimmersion[20]
Fig.4  Variations of maximum values of current densitieswith applied stress[24]
Fig.5  Ionic current density maps of electrode after immersion for different time[31] (unit: μAcm-2)
Fig.6  Current density maps of electrode surface after immersed in different electrolytes: (a) without inhibitors, (b) with phosphate, (c) with chromate[32]
[1] Cao C N, Zhang J Q.An Introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002(曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002)
[2] Peng X, Wang J, Shan C, et al.Corrosion behavior of long-time immersed rusted carbon steel in flowing seawater[J]. Acta Metall. Sin., 2012, 48: 1260(彭欣, 王佳, 山川等. 带锈碳钢在流动海水中的长期腐蚀行为[J]. 金属学报, 2012, 48: 1260)
[3] Zou Y, Zheng Y Y, Wang Y H, et al.Cathodic electrochemical behaviors of mild steel in seawater[J]. Acta Metall. Sin., 2010, 46: 123(邹妍, 郑莹莹, 王燕华等. 低碳钢在海水中的阴极电化学行为[J]. 金属学报, 2010, 46: 123)
[4] Liao X N, Cao F H, Zheng L Y, et al.Corrosion behaviour of copper under chloride-containing thin electrolyte layer[J]. Corros. Sci., 2011, 53: 3289
[5] Müller W D, Nascimento M L, Zeddies M, et al.Magnesium and its alloys as degradable biomaterials. Corrosion studies using potentiodynamic and EIS electrochemical techniques[J]. Mater. Res., 2007, 10: 5
[6] Liu X W, Xiong J P, Lv Y W, et al.Study on corrosion electrochemical behavior of several different coating systems by EIS[J]. Prog. Org. Coat., 2009, 64: 497
[7] Fan L, Ding K K, Guo W M, et al.Effect of hydrostatic pressure and pre-stress on corrosion behavior of a new type Ni-Cr-Mo-V high strength steel[J]. Acta Metall. Sin., 2016, 52: 679(范林, 丁康康, 郭为民等. 静水压力和预应力对新型Ni-Cr-Mo-V高强钢腐蚀行为的影响[J]. 金属学报, 2016, 52: 679)
[8] Bastos A C, Sim?es A M, Ferreiraa M G.Corrosion of electrogalvanized steel in 0.1 M NaCl studied by SVET[J]. Port. Electrochim. Acta, 2003, 21: 371
[9] Oltra R, Maurice V, Akid R, et al.Local Probe Techniques for Corrosion Research [M]. Cambridge: Woodhead Publishing Limited, 2007
[10] Deshpande K B.Experimental investigation of galvanic corrosion: comparison between SVET and immersion techniques[J]. Corros. Sci., 2010, 52: 2819
[11] Sim?es A M, Bastos A C, Ferreira M G, et al.Use of SVET and SECM to study the galvanic corrosion of an iron-zinc cell[J]. Corros. Sci., 2007, 49: 726
[12] Souto R M, González-García Y, Bastos A C, et al.Investigating corrosion processes in the micrometric range: A SVET study of the galvanic corrosion of zinc coupled with iron[J]. Corros. Sci., 2007, 49: 4568
[13] Battocchi D, He J, Bierwagen G P, et al.Emulation and study of the corrosion behavior of Al alloy 2024-T3 using a wire beam electrode (WBE) in conjunction with scanning vibrating electrode technique (SVET)[J]. Corros. Sci., 2005, 47: 1165
[14] Donatus U, Thompson G E, Liu H, et al.Understanding the galvanic interactions between AA2024T3 and mild steel using the scanning vibrating electrode technique[J]. Mater. Chem. Phys., 2015, 161: 228
[15] Deshpande K B.Effect of aluminium spacer on galvanic corrosion between magnesium and mild steel using numerical model and SVET experiments[J]. Corros. Sci., 2012, 62: 184
[16] Vuillemin B, Philippe X, Oltra R, et al.SVET, AFM and AES study of pitting corrosion initiated on MnS inclusions by microinjection[J]. Corros. Sci., 2003, 45: 1143
[17] Krawiec H, Vignal V, Oltra R.Use of the electrochemical microcell technique and the SVET for monitoring pitting corrosion at MnS inclusions[J]. Electrochem. Commun., 2004, 6: 655
[18] Manhabosco S M, Pritzel dos Santos á, Marcolin M L, et al. Localized corrosion of laser marked M340 martensitic stainless steel for biomedical applications studied by the scanning vibrating electrode technique under polarization[J]. Electrochim. Acta, 2016, 200: 189
[19] Wang L W, Du C W, Liu Z Y, et al.SVET characterization of localized corrosion of welded X70 pipeline steel in acid solution[J]. Corros. Prot., 2012, 33: 935(王力伟, 杜翠薇, 刘智勇等. X70钢焊接接头在酸性溶液中的局部腐蚀SVET研究[J]. 腐蚀与防护, 2012, 33: 935)
[20] Wang S Y, Ding J, Ming H L, et al.Characterization of low alloy ferritic steel-Ni base alloy dissimilar metal weld interface by SPM techniques, SEM/EDS, TEM/EDS and SVET[J]. Mater. Charact., 2015, 100: 50
[21] Wang L W, Liu Z Y, Cui Z Y, et al.In situ corrosion characterization of simulated weld heat affected zone on API X80 pipeline steel[J]. Corros. Sci., 2014, 85: 401
[22] Wang L W, Li X G, Du C W, et al.In-situ corrosion characterization of API X80 steel and its corresponding HAZ microstructures in an acidic environment[J]. J. Iron Steel Res. Int., 2015, 22: 135
[23] Luo S J, Wang R.Identification of the selective corrosion existing at the seam weld of electric resistance-welded pipes[J]. Corros. Sci., 2014, 87: 517
[24] Manhabosco S M, Batista R J C, Silva S N D, et al. Determination of current maps by SVET of hot-dip galvanized steel under simultaneous straining[J]. Electrochim. Acta, 2015, 168: 89
[25] Zhang G A, Cheng Y F.Micro-electrochemical characterization and Mott-Schottky analysis of corrosion of welded X70 pipeline steel in carbonate/bicarbonate solution[J]. Electrochim. Acta, 2009, 55: 316
[26] Zhang G A, Cheng Y F.Micro-electrochemical characterization of corrosion of welded X70 pipeline steel in near-neutral pH solution[J]. Corros. Sci., 2009, 51: 1714
[27] Xu L Y, Cheng Y F.Corrosion of X100 pipeline steel under plastic strain in a neutral pH bicarbonate solution[J]. Corros. Sci., 2012, 64: 145
[28] Sun M, Xiao K, Dong C F, et al.Effect of stress on electrochemical characteristics of pre-cracked ultrahigh strength stainless steel in acid sodium sulphate solution[J]. Corros. Sci., 2014, 89: 137
[29] Mouanga M, Andreatta F, Druart M E, et al.A localized approach to study the effect of cerium salts as cathodic inhibitor on iron/aluminum galvanic coupling[J]. Corros. Sci., 2015, 90: 491
[30] Coelho L B, Mouanga M, Druart M E, et al.A SVET study of the inhibitive effects of benzotriazole and cerium chloride solely and combined on an aluminium/copper galvanic coupling model[J]. Corros. Sci., 2016, 110: 143
[31] Sim?es A M, Fernandes J C S. Studying phosphate corrosion inhibition at the cut edge of coil coated galvanized steel using the SVET and EIS[J]. Prog. Org. Coat., 2010, 69: 219
[32] Bastos A C, Ferreira M G, Sim?es A M.Corrosion inhibition by chromate and phosphate extracts for iron substrates studied by EIS and SVET[J]. Corros. Sci., 2006, 48: 1500
[33] Marques A G, Sim?es A M.EIS and SVET assessment of corrosion resistance of thin Zn-55% Al-rich primers: Effect of immersion and of controlled deformation[J]. Electrochim. Acta, 2014, 148: 153
[34] Yan M C, Gelling V J, Hinderliter B R, et al.SVET method for characterizing anti-corrosion performance of metal-rich coatings[J]. Corros. Sci., 2010, 52: 2636
[35] Gustavsson J M, Innis P C, He J, et al.Processable polyaniline-HCSA/poly (vinyl acetate-co-butyl acrylate) corrosion protection coatings for aluminium alloy 2024-T3: A SVET and Raman study[J]. Electrochim. Acta, 2009, 54: 1483
[36] Sim?es A, Battocchi D, Tallman D, et al.Assessment of the corrosion protection of aluminium substrates by a Mg-rich primer: EIS, SVET and SECM study[J]. Prog. Org. Coat., 2008, 63: 260
[37] Tedim J, Bastos A C, Kallip S, et al.Corrosion protection of AA2024-T3 by LDH conversion films. Analysis of SVET results[J]. Electrochim. Acta, 2016, 210: 215
[38] Gnedenkov A S, Sinebryukhov S L, Mashtalyar D V, et al.Localized corrosion of the Mg alloys with inhibitor-containing coatings: SVET and SIET studies[J]. Corros. Sci., 2016, 102: 269
[39] Bastos A C, Zheludkevich M L, Ferreira M G S. A SVET investigation on the modification of zinc dust reactivity[J]. Prog. Org. Coat., 2008, 63: 282
[40] de Vooys A, van der Weijde H. Investigating cracks and crazes on coated steel with simultaneous SVET and EIS[J]. Prog. Org. Coat., 2011, 71: 250
[41] Tian Z H, Shi H W, Liu F C, et al.Inhibiting effect of 8-hydroxyquinoline on the corrosion of silane-based sol-gel coatings on AA 2024-T3[J]. Prog. Org. Coat., 2015, 82: 81
[1] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[2] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[3] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[4] REN Yan, QIAN Yuhai, ZHANG Xintao, XU Jingjun, ZUO Jun, LI Meishuan. Effect of Thermal Shock on Mechanical Properties of Siliconized Graphite with ZrB2-SiC-La2O3/SiC Coating[J]. 中国腐蚀与防护学报, 2021, 41(1): 29-35.
[5] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[6] LIU Yang, WU Jinyi, YAN Xiaoyu, CHAI Ke. Effect of Bacillus flexus on Degradation of Polyurethane Varnish Coating in Marine Environment[J]. 中国腐蚀与防护学报, 2021, 41(1): 36-42.
[7] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[8] LI Congwei, DU Shuangming, ZENG Zhilin, LIU Eryong, WANG Feihu, MA Fuliang. Effect of Current Density on Microstructure, Wear and Corrosion Resistance of Electrodeposited Ni-Co-B Coating[J]. 中国腐蚀与防护学报, 2020, 40(5): 439-447.
[9] SHAO Minglu, LIU Dexin, ZHU Tongyu, LIAO Bichao. Preparation of Urotropine Quaternary Ammonium Salt and Its Complex as Corrosion Inhibitor[J]. 中国腐蚀与防护学报, 2020, 40(3): 244-250.
[10] JIA Qiaoyan, WANG Bei, WANG Yun, ZHANG Lei, WANG Qing, YAO Haiyuan, LI Qingping, LU Minxu. Corrosion Behavior of X65 Pipeline Steel at Oil-Water Interface Region in Hyperbaric CO2 Environment[J]. 中国腐蚀与防护学报, 2020, 40(3): 230-236.
[11] ZHANG Chen, LU Yuan, ZHAO Jingmao. Synergistic Inhibition Effect of Imidazoline Ammonium Salt and Three Cationic Surfactants in H2S/CO2 Brine Solution[J]. 中国腐蚀与防护学报, 2020, 40(3): 237-243.
[12] SUN Shuo, YANG Jie, QIAN Xinzhu, CHANG Renli. Preparation and Electrochemical Corrosion Behavior of Electroless Plated Ni-Cr-P Alloy Coating[J]. 中国腐蚀与防护学报, 2020, 40(3): 273-280.
[13] CAO Jingyi, WANG Zhiqiao, LI Liang, MENG Fandi, LIU Li, WANG Fuhui. Failure Mechanism of Organic Coating with Modified Graphene Under Simulated Deep-sea Alternating Hydrostatic Pressure[J]. 中国腐蚀与防护学报, 2020, 40(2): 139-145.
[14] LV Xianghong,ZHANG Ye,YAN Yali,HOU Juan,LI Jian,WANG Chen. Performance Evaluation and Adsorption Behavior of Two New Mannich Base Corrosion Inhibitors[J]. 中国腐蚀与防护学报, 2020, 40(1): 31-37.
[15] SHI Chao,SHAO Yawei,XIONG Yi,LIU Guangming,YU Yuelong,YANG Zhiguang,XU Chuanqin. Influence of Silane Coupling Agent Modified Zinc Phosphate on Anticorrosion Property of Epoxy Coating[J]. 中国腐蚀与防护学报, 2020, 40(1): 38-44.
No Suggested Reading articles found!