Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2016, Vol. 36 Issue (4): 287-294    DOI: 10.11902/1005.4537.2016.096
Current Issue | Archive | Adv Search |
Progress in Characterization of Metallic Materials Corrosion by Ultraviolet Photoelectron Spectroscopy and X-ray Photoelectron Spectroscopy
Shenggang WANG(),Miao SUN,Kang LONG
Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(2456KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

In fact, the metallic material corrosion process may intrinsically involve subprocesses such as the exchange of valence electron between metallic atoms and ions in corrosive medium, the formation of oxide scale, the migration of corrosive species through the formed oxide scale, and the interaction between oxidation scale and corrosive medium. Therefore, the energy state of the valence electron of components of metallic material may play an important role in the corrosion process, thus for reveal which, ultraviolet photoelectron spectroscope (UPS) and X-ray photoelectron spectroscope (XPS) may become useful tool. Herewith new progress in this respect is subsequently introduced. The valence electron energy state of components for bulk nanocrystalline materials 304 stainless steel (BN-SS304), industrial pure aluminum (BN-Al) and ingot iron (BNII), as well as their counterparts of conventional microcrystalline ones (CP-SS304), (CP-Al) and (CPII) was characterized by UPS at room temperature. The valence electron energy state of components of the oxide scale formed on these metallic materials due to corrosion in hydrochloric acid solutions, and the oxide scales formed on BN-SS304 and CP-SS304 due to air oxidation at 900 ℃ were comparatively studied by XPS. The above aquired results may enable one to establish the relationship between the corrosion performance with the valence electron energy state of components of these metallic materials, and to figure the electron structure of components of the corresponding formed oxide scales, as well. Furthermore, a new concept of intrinsic parameter related with metallic material corrosion was proposed.

Key words:  corrosion      valence electron structure      oxide scale      XPS      UPS     

Cite this article: 

Shenggang WANG, Miao SUN, Kang LONG. Progress in Characterization of Metallic Materials Corrosion by Ultraviolet Photoelectron Spectroscopy and X-ray Photoelectron Spectroscopy. Journal of Chinese Society for Corrosion and protection, 2016, 36(4): 287-294.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.096     OR     https://www.jcscp.org/EN/Y2016/V36/I4/287

Fig.1  Ultraviolet photoelectron spectroscopies of BNII (a) and CPII (b)[14]
Fig.2  Ultraviolet photoelectron spectroscopies of BN-SS304 (a) and CP-SS304 (b) (SE: secondary electron)[15]
Fig.3  Ultraviolet photoelectron spectroscopies of BN-Al (a) and CP-Al (b)[16]
Fig.4  SEM images of corroded surfaces of BN-SS304 (a) and CP-SS304 (b) after 30 d immersion in 0.5 mol/L HCl solution at room temperature[15]
Fig.5  SEM images of corroded surfaces of BN-Al (a) and CP-Al (b) after 9 d immersion in 0.25 mol/L HCl solution at room temperature[16]
Fig.6  Binding energy (a) and atomic fraction (b) of Cl- in the oxide films formed on of BN-SS304 and CP-SS304 after 30 d immersion in 0.5 mol/L HCl solution at room temperature[15]
Fig.7  Binding energy (a) and atomic fraction (b) of Cl- in the oxide films formed on BN-Al and CP-Al after 9 d immersion in 0.25 mol/L HCl solution at room temperature[16]
Fig.8  Oxidation kinetics curves of BN-SS304 and CP-SS304 during heating stage from 25 ℃ to 900 ℃ (a) and isothermal oxidation at 900 ℃ (b) in air[17]
[1] Williams D E, Newman R C, Song Q, et al.Passivity breakdown and pitting corrosion of binary alloys[J]. Nature, 1991, 350: 216
[2] Ras M H, Pistorius P C.Possible mechanisms for the improvement by vanadium of the pitting corrosion resistance of 18% chromium ferritic stainless steel[J]. Corros. Sci., 2002, 44: 2479
[3] Gahari M, Krouse D, Laycock N, et al.Synchrotron X-ray radiography studies of pitting corrosion of stainless steel: Extraction of pit propagation parameters[J]. Corros. Sci., 2015, 100: 23
[4] Hao J L, Gao Y J, Dong Z H.Effects of siloxane sulfide and cerium salt complex conversion film on corrosion resistance of aluminum alloy[J]. J. Chin. Soc. Corros. Prot., 2015, 35(6): 525
[4] (郝敬丽, 高永晶, 董泽华. 硅氧烷硫化物与铈盐复合膜对铝合金耐点蚀能力的影响[J]. 中国腐蚀与防护学报, 2015, 35(6): 525)
[5] Renner F U, Stierle A, Dosch H, et al.Initial corrosion observed on the atomic scale[J]. Nature, 2006, 439: 707
[6] Punckt C, Bolscher M, Rotermund H H, et al.Sudden onset of pitting corrosion on stainless steel as a phenomenon[J]. Science, 2004, 305: 1133
[7] Martin F A, Bataillon C, Cousty J.In situ AFM detection of pit onset location on a 304L stainless steel[J]. Corros. Sci., 2008, 50: 84
[8] Neil B, Gerald H M, Frederick S P.Introduction to the High-Temperature Oxidation of Metals [M]. London: Cambridge University Press and Higher Education Press, 2010
[9] Wang P, Deng S J, He Y D, et al.Oxidation and hot corrosion behavior of Al2O3/YSZ coatings prepared by cathode plasma electrolytic deposition[J]. Corros. Sci., 2016, 109: 13
[10] Ras M H, Pistorius P C.Possible mechanisms for the improvement by vanadium of the pitting corrosion resistance of 18% chromium ferritic stainless steel[J]. Corros. Sci., 2002, 44: 2479
[11] Liu Z H, Qi Q, Yan Y J, et al.Effect of residual phase and grain size on corrosion resistance of SiC ceramics in mixed HF-HNO3 acid solution[J]. J. Inorg. Mater., 2016, 31(6): 661
[12] Jiang D M, Liu Y, Liang S, et al.The effect of non-isothermal aging on the strength and corrosion behavior of Al-Zn-Mg-Cu alloy[J]. J. Alloy. Compd., 2016, 681: 57
[13] Saeed A, Khan Z A, Nazir M H.Time dependent surface corrosion analysis and modeling of automotive steel under a simplistic model of variations in environmental parameters[J]. Mater. Chem. Phys., 2016, 178: 65
[14] Wang S G, Sun M, Long K.The electrochemical corrosion of bulk nanocrystalline ingot iron in HCl solutions with different concentrations[J]. Mater. Chem. Phys., 2011, 127: 459
[15] Wang S G, Sun M, Long K.The enhanced even and pitting corrosion resistances of bulk nanocrystalline steel in HCl solution[J]. Steel Res. Int., 2012, 83: 800
[16] Wang S G, Huang Y J, Han H B, et al.The electrochemical corrosion characterization of bulk nanocrystalline aluminium by X-ray photoelectron spectroscopy and ultra-violet photoelectron spectroscopy[J]. J. Electroanal. Chem., 2014, 724: 95
[17] Wang S G, Sun M, Han H B, et al.The high-temperature oxidation of bulk nanocrystalline 304 stainless steel in air[J]. Corros. Sci., 2013, 72: 64
[18] Wang S G, Huang Y J, Sun M, et al.The electrochemical corrosion of bulk nanocrystalline aluminum in acidic sodium sulfate solutions at room temperature[J]. J. Phys. Chem., 2015, 119C: 9851
[19] Wang S G, Sun M, Long K, et al.The electronic structure characterization of oxide film on bulk nanocrystalline 304 stainless steel in hydrochloric acid solution[J]. Electrochim. Acta, 2013, 112: 371
[20] Li W, Li D Y.Variations of work function and corrosion behaviors of deformed copper surfaces[J]. Appl. Surf. Sci., 2004, 240: 388
[21] Li W, Li D Y.Influence of surface morphology on corrosion and electronic behavior[J]. Acta Mater., 2006, 54: 445
[22] Chen C, Li D Y, Shang C J.Nanocrystallization of aluminized surface of carbon steel for enhanced resistances to corrosion and corrosive wear[J]. Electrochim. Acta, 2009, 55: 118
[23] Xu P, Zhang C, Wang W, et al.Pitting mechanism in a stainless steel-reinforced Fe-based amorphous coating[J]. Electrochim. Acta, 2016, 206: 61
[24] Otero M, Lener G, Trincavelli J, et al.New kinetic insight into the spontaneous oxidation process of lithiumin air by EPMS[J]. Appl. Surf. Sci., 2016, 383: 64
[25] Li N, Li Y, Wang S G, et al.Electrochemical corrosion behavior of nanocrystallized bulk 304 stainless steel[J]. Electrochim. Acta, 2006, 52: 760
[26] Chimi Y, Kitsunai Y, Kasahara S, et al.Correlation between locally deformed strcture and oxide film properties in austenitic stainless steel irradiated with neutrons[J]. J. Nucl. Mater., 2016, 475: 71
[27] Idczak K, Idczak R, Konieczny R.An investigation of the corrosion of polycrystalline iron by XPS, TMS and CEMS[J]. Physica B, 2016, 491: 37
[28] Si J J, Chen X H, Cai Y H, et al.Corrosion behavior of Cr-based bulk metallic glasses in hydrochloric acid solutions[J]. Corros. Sci., 2016, 107: 123
[29] Huang Z, Peng X, Xu C, et al.Effect of alloy nanocrystallization and Cr distribution on the development of a chromia scale[J]. J. Electrochem. Soc., 2009, 156: 95
[30] Merz M D.Oxidation resistance of fine-grained sputter-deposited 304 stainless steel[J]. Metall. Trans., 1979, A10: 71
[31] Goedjen J G, Shores D A.The effect of alloy size on the transient oxidation behavior of an alumina-forming alloy[J]. Oxid. Met., 1992, 37: 125
[32] Zhang B, Liu L, Li T S, et al.Adsorption and diffusion behavior of Cl- on sputtering Fe-20Cr nanocrystalline thin film in acid solution (pH=2)[J]. J. Mater. Sci. Technol., 2015, 31: 1198
[33] Zhang L, Chen Y, Wan Q L, et al.Electrochemical corrosion behaviors of straight WC-Co alloys: Exclusive variation in grain sizes and aggressive media[J]. Int. J. Refract. Met. Hard Mater., 2016, 57: 70
[34] Meng G Z, Li Y, Shao Y W, et al.Effect of microstructures on corrosion behavior of nickel coating: (II) Competitive effect of grain size and twins density on corrosion behavior[J]. J. Mater. Sci. Technol., 2016, 32(5): 465
[35] Lv J L, Liang T X, Wang C, et al.Effect of ultrafine grain on tensile behaviour and corrosion resistance of the duplex stainless steel[J]. Mater. Sci. Eng., 2016, 62C: 558
[36] Balusamy T, Sankar Narayanan T S N, Ravichandran K, et al. Influence of surface mechanical attrition treatment (SMAT) on the corrosion behaviour of AISI 304 stainless steel[J]. Corros. Sci., 2013, 74: 332
[37] Balusamy T, Satendra K, Sankara Narayanan T S N. Effect of surface nanocrystallization on the corrosion behaviour of AISI 409 stainless steel[J]. Corros. Sci., 2010, 52: 3826
[38] Chen T, John H, Xu J, et al.Influence of surface modifications on pitting corrosion behavior of nickel-base alloy 718.Part 1: Effect of machine hammer peening[J]. Corros. Sci., 2013, 77: 230
[39] Zhang L, Zhang Y K, Lu J Z, et al.Effects of laser shock processing on electrochemical corrosion resistance of ANSI 304 stainless steel weldments after cavitation erosion[J]. Corros. Sci., 2013, 66: 5
[1] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[2] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[3] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[4] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[5] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[6] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[7] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[8] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[9] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[10] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[11] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[12] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[13] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[14] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!