Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (2): 81-92    DOI: 10.11902/1005.4537.2016.073
Orginal Article Current Issue | Archive | Adv Search |
Review of Thermal Aging of Nuclear Grade Stainless Steels
Xiaodong LIN,Qunjia PENG(),En-Hou HAN,Wei KE
Key Laboratory of Nuclear Materials and Safety Assessment, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
Download:  HTML  PDF(6561KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Nuclear grade cast and welded austenitic stainless steels are subjected to thermal aging during long-term service in light water nuclear reactors (LWRs), primarily due to the existence of certain amount of ferrite in the steels. The thermal aging results in degradation of the mechanical and corrosion properties of the steels, which leads to a potential concern to the structural integrity of the relevant LWR components. This paper reviewed the recent research progress of the effect of thermal aging on microstructures and properties of the nuclear grade cast and welded stainless steels, as well as the kinetics, assessment and prediction methods for thermal aging. The mechanism of thermal aging induced embrittlement was discussed. Challenges and trends for the research of thermal aging in the future were also briefly addressed.

Key words:  nuclear grade stainless steel      thermal aging      kinetics      embrittlement assessment      lifetime prediction      embrittlement mechanism     
Received:  07 June 2016     
Fund: Supported by National Natural Science Foundation of China (51571204)

Cite this article: 

Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Review of Thermal Aging of Nuclear Grade Stainless Steels. Journal of Chinese Society for Corrosion and protection, 2017, 37(2): 81-92.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.073     OR     https://www.jcscp.org/EN/Y2017/V37/I2/81

Fig.1  Microstructures of CF8 cast austenitic stainless steel (a), 308 stainless steel weld metal (b) and solution-treated 2205 duplex stainless steel (c)[3,27,28]
Fig.2  Fe-Cr binary phase diagram (a)[34,35] and vertical section of Fe-45%Cr-5%Ni phase diagram (b)[36]
Fig.3  Spinodal structure of ferrite in 308L stainless steel weld metal aged at 335 ℃ for 20000 h[40]
Fig.4  Concentration profiles and related frequency distributions of Cr in ferrite of CF8M steel[10]
Fig.5  APT Cr maps (a) and differences of Cr concentration between α phase and α ' phase (b) for alloy 2003 and 2205 aged at 427 ℃ for different time[41]
Fig.6  Dark-field images (a, b, c) and selected-area diffraction patterns (a', b', c') of G-phase precipitates in ferrite of CF3M cast stainless steel aged at 350 ℃ for 2000 h (a, a'), 400 ℃ for 5000 h (b, b') and 450 ℃ for 500 h (c, c') [53]
Fig.7  Charpy-V impact transition curves of 308L stainless steel weld metal aged at 335 ℃ (a), 365 ℃ (b) and 400 ℃ for different aging time (c)[37]
Fig.8  Fracture morphologies of 308L stainless steel weld metal without (a) and with (b) aging at 365 ℃for 20000 h after Charpy-V impact test at room temperature[37]
Fig.9  Relative kinetics producing constant impact energy drop for three hypothetical examples of microstructural transformation under otherwise identical conditions (schematic)[14]
Fig.10  Variation of room-temperature impact energy of aged CF8 stainless steel with aging parameter P [4]
Fig.11  Relationships between the peak current density during SLEPR test and the hardness of ferrite in 308L stainless steel weld metal (a)[40] and the peak anodic current density for secondary passivation and microhardness of ferrite in 2205 duplex stainless steel (b)[49]
Fig.12  lg(CVN)-P correlation curves and lower bound lines of aged CF8 austenitic stainless steels with ferrite contents of 21%, 24% (a) and 13% (b)[87]
[1] Cicero S, Setién J, Gorrochategui I.Assessment of thermal aging embrittlement in a cast stainless steel valve and its effect on the structural integrity[J]. Nucl. Eng. Des., 2009, 239: 16
[2] Yi Y S, Shoji T.Detection and evaluation of material degradation of thermally aged duplex stainless steels: Electrochemical polarization test and AFM surface analysis[J]. J. Nucl. Mater., 1996, 231: 20
[3] Mathew M D, Lietzan L M, Murty K L, et al.Low temperature aging embrittlement of CF-8 stainless steel[J]. Mater. Sci. Eng., 1999, A269: 186
[4] Chung H M, Chopra O K.Microstructures of cast-duplex stainless steel after long-term aging [A]. Proceedings of the 2nd International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. Monterey: American Nuclear Society, 1986: 287
[5] Ming H L, Zhang Z M, Wang J Q, et al.Microstructural characterization of an SA508-309L/308L-316L domestic dissimilar metal welded safe-end joint[J]. Mater. Charact., 2014, 97: 101
[6] Hale G E, Garwood S J.Effect of aging on fracture behaviour of cast stainless steel and weldments[J]. Mater. Sci. Technol., 1990, 6: 230
[7] Li S L, Wang Y L, Li S X, et al.Microstructures and mechanical properties of cast austenite stainless steels after long-term thermal aging at low temperature[J]. Mater. Des., 2013, 50: 886
[8] Tavassoli A A, Bisson A, Soulat P.Ferrite decomposition in austenitic stainless steel weld metals[J]. Met. Sci., 1984, 18: 345
[9] Keown S R, Thomas R G.Role of delta ferrite in thermal aging of type 316 weld metals[J]. Met. Sci., 1981, 15: 386
[10] Danoix F, Auger P.Atom probe studies of the Fe-Cr system and stainless steels aged at intermediate temperature: a review[J]. Mater. Charact., 2000, 44: 177
[11] Trautwein A, Gysel W.Influence of long time aging of CF8 and CF8M cast steel at temperatures between 300 and 500 ℃ on the impact toughness and the structure properties[J]. Int. Cast Met. J., 1981, 6: 43
[12] Wang Y Q, Li S L, Yang B, et al.Research status and outlook on thermal aging of cast austenitic stainless steels used in primary coolant pipes of nuclear power plant[J]. Mater. Rev., 2012, 26(2): 101
[12] (王永强, 李时磊, 杨滨等. 核电站一回路主管道铸造奥氏体不锈钢热老化研究现状与展望[J]. 材料导报, 2012, 26(2): 101)
[13] Chung H M.Aging and life prediction of cast duplex stainless steel components[J]. Int. J. Pres. Ves. Pip., 1992, 50: 179
[14] Chung H M, Leax T R.Embrittlement of laboratory and reactor aged CF3, CF8, and CF8M duplex stainless steels[J]. Mater. Sci. Technol., 1990, 6: 249
[15] Chung H M, Chopra O K.Kinetics and imechanism of thermal aging embrittlement of duplex stainless steels [A]. Proceedings of the 3rd International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. Traverse City: The Metallurgical Society, 1987: 359
[16] Chopra O K, Chung H M.Initial assessment of the processes and significance of thermal aging in cast stainless steels [A]. Proceedings of the 16th Water Reactor Safety Information Meeting[C]. Gaithersburg: National Institute of Standards and Technology, 1988: 1
[17] Xue F, Wang Z X, Shu G G, et al.Thermal aging effect on Z3CN20.09M cast duplex stainless steel[J]. Nucl. Eng. Des., 2009, 239: 2217
[18] Li S L, Wang Y L, Cheng L, et al.Thermal aging mechanism of Z3CN20-09M cast austenite stainless steel[J]. J. Univ. Sci. Technol. Beijing, 2008, 30: 1117
[18] (李时磊, 王艳丽, 程路等. Z3CN20-09M铸造奥氏体不锈钢的热老化机理[J]. 北京科技大学学报, 2008, 30: 1117)
[19] Li S L, Wang Y L, Zhang H L, et al.Microstructure evolution and impact fracture behaviors of Z3CN20-09M stainless steels after long-term thermal aging[J]. J. Nucl. Mater., 2013, 433: 41
[20] Xue F, Wang Z X, Shu G G, et al.Thermal aging mechanism of the primary pipe CDSS [A]. Progress Report on China Nuclear Science and Technology[C]. Beijing: Chinese Nuclear Society, 2009: 1705
[20] (薛飞, 王兆希, 束国刚等. 一回路主管道双相不锈钢热老化机理研究 [A]. 中国核学会2009年学术年会论文集[C]. 北京: 中国核学会, 2009: 1705)
[21] Xue F, Yu W W, Wang Z X, et al.Evaluation of thermal aging effect on primary pipe material in nuclear power plant by micro hardness test method[J]. Atom. Energy Sci. Technol., 2012, 46: 809
[21] (薛飞, 余伟炜, 王兆希等. 显微硬度法分析核电站主管道热老化趋势[J]. 原子能科学技术, 2012, 46: 809)
[22] Ren S H, Xue F, Yu W W, et al.Reliability residual-life prediction method for thermal aging based on performance degradation[J]. Nucl. Power Eng., 2013, 34(5): 96
[22] (任淑红, 薛飞, 余伟炜等. 基于性能退化的热老化可靠性剩余寿命预测方法[J]. 核动力工程, 2013, 34(5): 96)
[23] Xue F, Shu G G, Ti W X, et al.Experimental study on thermal aging impact properties of austenitic stainless steel Z3CN20.09M[J]. Nucl. Power Eng., 2010, 31(1): 9
[23] (薛飞, 束国刚, 遆文新等. Z3CN20.09M奥氏体不锈钢热老化冲击性能试验研究[J]. 核动力工程, 2010, 31(1): 9)
[24] Xue F, Shu G G, Yu W W, et al.Evaluation of the thermal aging effect on Charpy impact properties of the primary pipe material in nuclear power station[J]. Eng. Mech., 2010, 27(8): 246
[24] (薛飞, 束国刚, 余伟炜等. 热老化对核电主管道材料冲击性能影响及老化趋势研究[J]. 工程力学, 2010, 27(8): 246)
[25] Abe H, Watanabe Y.Low-temperature aging characteristics of type 316L stainless steel welds: dependence on solidification mode[J]. Metall. Mater. Trans., 2008, 39A: 1392
[26] Brooks J A, Thompson A W.Microstructural development and solidification cracking susceptibility of austenitic stainless steel welds[J]. Int. Mater. Rev., 1991, 36: 16
[27] Vitek J M, David S A, Alexander D J, et al.Low temperature aging behavior of type 308 stainless steel weld metal[J]. Acta Metall. Mater., 1991, 39: 503
[28] Rovere C A D, Santos F S, Silva R, et al. Influence of long-term low-temperature aging on the microhardness and corrosion properties of duplex stainless steel[J]. Corros. Sci., 2013, 68: 84
[29] Weng K L, Chen H R, Yang J R.The low-temperature aging embrittlement in a 2205 duplex stainless steel[J]. Mater. Sci. Eng., 2004, A379: 119
[30] Auger P, Danoix F, Menand A, et al.Atom probe and transmission electron microscopy study of aging of cast duplex stainless steels[J]. Mater. Sci. Technol., 1990, 6: 301
[31] Takeuchi T, Kakubo Y, Matsukawa Y, et al.Effects of thermal aging on microstructure and hardness of stainless steel weld-overlay claddings of nuclear reactor pressure vessels[J]. J. Nucl. Mater., 2014, 452: 235
[32] Takeuchi T, Kameda J, Nagai Y, et al.Microstructural changes of a thermally aged stainless steel submerged arc weld overlay cladding of nuclear reactor pressure vessels[J]. J. Nucl. Mater., 2012, 425: 60
[33] Vrinat M, Cozar R, Meyzaud Y.Precipitated phases in the ferrite of aged cast duplex stainless steels[J]. Scripta Metall., 1986, 20: 1101
[34] Williams R O, Praxton H W.The nature of aging binary iron-chromium alloys around 500 ℃[J]. J. Iron Steel Inst., 1957, 185: 358
[35] Chandra D, Schwartz L H.M?ssbauer effect study of the 475 ℃ decomposition of Fe-Cr[J]. Metall. Trans., 1971, 2: 511
[36] Miller M K, Anderson I M, Bentley J, et al. Phase separation in the Fe-Cr-Ni system [J]. Appl. Surf. Sci., 1996, 94/95: 391
[37] Chandra K, Kain V, Bhutani V, et al.Low temperature thermal aging of austenitic stainless steel welds: kinetics and effects on mechanical properties[J]. Mater. Sci. Eng., 2012, A534: 163
[38] Alexander K B, Miller M K, Alexander D J, et al.Microscopical evaluation of low temperature aging of type 308 stainless steel weldments[J]. Mater. Sci. Technol., 1990, 6: 314
[39] Danoix F, Deconihout B, Bostel A, et al.Some new aspects on microstructural and morphological evolution of thermally aged duplex stainless steels[J]. Surf. Sci., 1992, 266: 409
[40] Chandra K, Kain V, Raja V S, et al.Low temperature thermal ageing embrittlement of austenitic stainless steel welds and its electrochemical assessment[J]. Corros. Sci., 2012, 54: 278
[41] Tucker J D, Miller M K, Young G A.Assessment of thermal embrittlement in duplex stainless steels 2003 and 2205 for nuclear power applications[J]. Acta Mater., 2015, 87: 15
[42] Hetherington M G, Hyde J M, Miller M K, et al.Measurement of the amplitude of a spinodal[J]. Surf. Sci., 1991, 246: 304
[43] Langer J S, Bar-on M, Miller H D. New computational method in the theory of spinodal decomposition[J]. Phys. Rev., 1975, 11A: 1417
[44] Auger P, Menand A, Blavette D.Statistical analysis of atom-probe data (II): Theoretical frequency distributions for periodic fluctuations and some applications[J]. J. Phys. Colloques, 1988, 49: C6-439
[45] Strangwood M, Druce S G.Aging effects in welded cast CF3 stainless steel[J]. Mater. Sci. Technol., 1990, 6: 237
[46] Pumphrey P H, Akhurst K N.Aging kinetics of CF3 cast stainless steel in temperature range 300~400 ℃[J]. Mater. Sci. Technol., 1990, 6: 211
[47] Leax T R, Brenner S S, Spitznagel J A.Atom probe examination of thermally ages CF8M cast stainless steel[J]. Metall. Trans., 1992, 23: 2725
[48] Kwon J D, Woo S W, Lee Y S, et al.Effects of thermal aging on the low cycle fatigue of austenitic-ferritic duplex cast stainless steel behavior[J]. Nucl. Eng. Des., 2001, 206: 35
[49] Chandra K, Singhal R, Kain V, et al.Low temperature embrittlement of duplex stainless steel: correlation between mechanical and electrochemical behavior[J]. Mater. Sci. Eng., 2010, A527: 3904
[50] Kawaguchi S, Sakamoto N, Takano G, et al.Microstructural changes and fracture behavior of CF8M duplex stainless steels after long-term aging[J]. Nucl. Eng. Des., 1997, 174: 273
[51] Bonnet S, Bourgoin J, Champredonde J, et al.Relationship between evolution of mechanical properties of various cast duplex stainless steels and metallurgical and aging parameters: outline of current EDF programes[J]. Mater. Sci. Technol., 1990, 6: 221
[52] Miller M K, Bentley J, Brenner S S, et al.Long term thermal aging of type CF 8 stainless steel[J]. J. Phys. Colloques, 1984, 45: C9-385
[53] Hamaoka T, Nomoto A, Nishida K, et al.Effects of aging temperature on G-phase precipitation and ferrite-phase decomposition in duplex stainless steel[J]. Philos. Mag., 2012, 92: 4354
[54] Li S L, Wang Y L, Wang X T, et al.G-phase precipitation in duplex stainless steels after long-term thermal aging: A high-resolution transmission electron microscopy study[J]. J. Nucl. Mater., 2014, 452: 382
[55] Vitek J M.G-phase formation in aged type 308 stainless steel[J]. Metall. Trans., 1987, 18A: 154
[56] Mateo A, Llanes L, Anglada M, et al.Characterization of the intermetallic G-phase in an AISI 329 duplex stainless steel[J]. J. Mater. Sci., 1997, 32: 4533
[57] Pareige C, Emo J, Saillet S, et al.Kinetics of G-phase precipitation and spinodal decomposition in very long aged ferrite of a Mo-free duplex stainless steel[J]. J. Nucl. Mater., 2015, 465: 383
[58] Yamada T, Okano S, Kuwano H.Mechanical property and microstructural change by thermal aging of SCS14A cast duplex stainless steel[J]. J. Nucl. Mater., 2006, 350: 47
[59] Li S L, Zhang H L, Wang Y L, et al.Annealing induced recovery of long-term thermal aging embrittlement in a duplex stainless steel[J]. Mater. Sci. Eng., 2013, A564: 85
[60] Danoix F, Auger P, Blavette D.Hardening of aged duplex stainless steels by spinodal decomposition[J]. Microsc. Microanal., 2004, 10: 349
[61] Kwon J D, Ihn J H, Park J C, et al.An evaluation of cast stainless steel (CF8M) fracture toughness caused by thermal aging at 430 ℃[J]. KSME Int. J., 2002, 16: 902
[62] Lucas T, Ballinger R G, Hanninen H, et al.Effect of thermal aging on SCC, material properties and fracture toughness of stainless steel weld metals [A]. Proceeding of the 15th International Conference on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. Chichester: John Wiley and Sons, 2011: 883
[63] Chen W F, Xue F, Tian Y, et al.Effect of thermal aging on the low cycle fatigue behavior of Z3CN20.09M cast duplex stainless steel[J]. Mater. Sci. Eng., 2015, A646: 263
[64] Calonne V, Gourgues A F, Pineau A.Fatigue crack propagation in cast duplex stainless steels: thermal ageing and microstructural effects[J]. Fatigue Fract. Eng. Mater. Struct., 2004, 27: 31
[65] Yao Y H, Wei J F, Wang Z P.Effect of long-term thermal aging on the mechanical properties of casting duplex stainless steels[J]. Mater. Sci. Eng., 2012, A551: 116
[66] Alexander D J, Alexander K B, Miller M K, et al.The effect of aging at 343°C on the mechanical properties and microstructure of type 308 stainless steel weldments [A]. Proceeding of the 1st International Conference on Microstructures and Mechanical Properties of Aging Materials[C]. Warrendale: Minrals, Metals and Materials Society, 1992: 263
[67] Wang Y Q, Yang B, Han J, et al.Localized corrosion of thermally aged cast duplex stainless steel for primary coolant pipes of nuclear power plant[J]. Procedia Eng., 2012, 36: 88
[68] Kuri S E, May J E, Moreno J R S. Induced susceptibility to pitting corrosion in duplex stainless steel due to long aging at low temperatures[J]. Mater. Corros., 2001, 52: 785
[69] Kim J H, Ballinger R G.Stress corrosion cracking crack growth behavior of type 316L stainless steel weld metals in boiling water reactor environments[J]. Corrosion, 2008, 64: 645
[70] Li S L, Wang Y L, Wang H, et al.Effects of long-term thermal aging on the stress corrosion cracking behavior of cast austenitic stainless steels in simulated PWR primary water[J]. J. Nucl. Mater., 2016, 469: 262
[71] Lai C L, Lu W F, Huang J Y.Effect of δ-ferrite content on the stress corrosion cracking behavior of cast austenitic stainless steel in high-temperature water environment[J]. Corrosion, 2014, 70: 591
[72] Pareige C, Novy S, Saillet S, et al.Study of phase transformation and mechanical properties evolution of duplex stainless steels after long term thermal ageing (>20 years)[J]. J. Nucl. Mater., 2011, 411: 90
[73] González J J, Gutiérrez-Solana F, Sánchez L, et al.Low-temperature aging kinetics in cast duplex stainless steels: Experimental characterization[J]. J. Test. Eval., 1997, 25: 154
[74] Slama G, Petrequin P, Mager T.Effect of aging on mechanical properties of austenitic stainless steel castings and welds [A]. SMiRT Post Conference Seminar 6-Assuring Structural Integrity of Steel Reactor Pressure Boundary Components[C]. Monterey, 1983: 29
[75] Miller M K, Hyde J M, Cerezo A, et al. Comparison of low temperature decomposition in Fe-Cr and duplex stainless steels [J]. Appl. Surf. Sci., 1995, 87/88: 323
[76] Nakano K, Kanao M, Hoshino A.Effects of Ni content and austenite phase on low temperature toughness and embrittlement behaviour of Fe-26% Cr alloys[J]. Tetsu Hag., 1976, 62: 1219
[77] Jeon J Y, Kim Y J, Lee M Y, et al.A method to quantify thermal aging effects on fracture toughness of cast stainless steels (CSSs)[J]. Procedia Mater. Sci., 2014, 3: 997
[78] Park J S, Yoon Y K.Evaluation of thermal aging embrittlement of duplex stainless steels by electrochemical method[J]. Scripta Metall. Mater., 1995, 32: 1163
[79] ?íhal V, Lasek S, Blahetová M, et al.Trends in the electrochemical polarization potentiodynamic reactivation method-EPR[J]. Chem. Biochem. Eng. Quart., 2007, 21: 47
[80] ?íhal V, ?tefec R, Shoji T, et al. Electrochemical potentiodynamic reactivation: development and applications of the EPR test [J]. Key Eng. Mater., 2004, 261-263: 855
[81] Aydo?du G H, Aydinol M K.Determination of susceptibility to intergranular corrosion and electrochemical reactivation behaviour of AISI 316L type stainless steel[J]. Corros. Sci., 2006, 48: 3565
[82] Yi Y S, Tomobe T, Watanabe Y, et al.Nondestructive evaluation of thermal aging embrittlement of duplex stainless steels [A]. Proceedings of the 6th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. Warrendale: Minerals, Metals and Materials Society, 1993: 409
[83] Yi Y S, Shoji T.Quantitative evaluation of material degradation of thermally aged duplex stainless steels using chemical immersion test[J]. J. Nucl. Mater., 1996, 240: 62
[84] Fujioka T, Kashima K.A sensitivity study in probabilistic fracture mechanics analysis of light water reactor carbon steel pipe[J]. Int. J. Pres. Ves. Pip., 1992, 52: 403
[85] Lee S M, Chang Y S, Choi J B, et al.Failure probability assessment of wall-thinned nuclear pipes using probabilistic fracture mechanics[J]. Nucl. Eng. Des., 2006, 236: 350
[86] Li S X, Zhang H L, Li S L, et al.Probabilistic fracture mechanics analysis of thermally aged nuclear piping in a pressurized water reactor[J]. Nucl. Eng. Des., 2013, 265: 611
[87] Jaske C E, Shah V N.Life assessment procedure for LWR cast stainless steel components [A]. Proceedings of the 4th International Symposium on Environmental Degradation of Materials in Nuclear Power Systems-Water Reactors[C]. South Creek Drive: National Association of Corrosion Engineers, 1990: 66
[88] Jaske C E, Shah V N, Weidenhamer G H.Life assessment procedures for major LWR (light water reactor) components: cast stainless steel components [R]. Idaho Falls: Idaho National Engineering Laboratory, 1990
[1] YI Xueqing,LU Yonghao,CHEN Yingfeng. Effects of Sensitization and Solid-solution Treatment on Interphase Corrosion Susceptibility of Nuclear Grade Z3CN-09M Stainless Steel[J]. 中国腐蚀与防护学报, 2013, 33(2): 141-147.
[2] CAI Jianping, LIU Ming, AN Yinghui. DEGRADATION KINETICS OF PROTECTIVE COATING FOR ALUMINUM ALLOY[J]. 中国腐蚀与防护学报, 2012, 32(3): 256-261.
[3] WANG Lihua, CHENG Congqian, YANG Fen, ZHAO Jie. LEACHING BEHAVIOR OF LEAD-FREE SOLDERS IN A NaCl-Na2SO4-Na2CO3 MIXED SOLUTION AS SIMULATED SOIL[J]. 中国腐蚀与防护学报, 2011, 31(5): 381-384.
[4] ;. Influence of biofilms adsorption kinetics on the open-circuit-potential changes of passive metals in seawater[J]. 中国腐蚀与防护学报, 2006, 26(2): 65-69 .
[5] Mengjin Meng; Xiaofeng Sun; Hengrong Guan; Xiaoxia Jiang. HIGH TEMERATURE OXIDATION BEHAVIOR OF (Ni,Pd) Al COATION[J]. 中国腐蚀与防护学报, 2003, 23(1): 13-16 .
[6] TANG Zi-long (Dept. Materials; Tianjing University; Tianjin 300072). KINETIC ANALYSIS ON PITTING GROWTH[J]. 中国腐蚀与防护学报, 1998, 18(4): 241-250.
[7] DAI Zhong-xu GAN Fu-xing WANG Di-hua YAO Lu-an (Department of Environmental Science; Wuhan University; Wuhan 430072). EQCM STUDY ON THE FILMING KINETICS OF NEUTRAL CORROSION INHIBITORS ON IRON[J]. 中国腐蚀与防护学报, 1998, 18(4): 251-256.
[8] TANG Zi-long SONG Shi-zhe (Department of Materials; Tainjin University; Tainjin 300072)GUO Ying-kai (Tianjin Professional Collage; Tainjin 300402). STUDY ON INHIBITION BY PIPERIDINE USING ATOMIC ABSORPTION SPECTROMETRY Ⅱ. PITTING GROWTH FOR TYPE 304 STAINLESS STEEL IN NaCl SOLUTION AND ITS INHIBITION BY PIPERIDINE[J]. 中国腐蚀与防护学报, 1998, 18(3): 168-177.
[9] ZHANG Hongbin HUANG Yongchang (Department of Applied Chemistry; Shanghai Jiao Tong University). NEW NUMERICAL METHODS FOR ESTIMATING THE ELECTROCHEMICAL KINETICS PARAMETERS OF CORROSION PROCESS USING WEAK POLARIZATION CURVE[J]. 中国腐蚀与防护学报, 1997, 17(3): 227-232.
[10] LI Tiefan; YE Changjiang (Cormsion Science Lab.; Institute of Corrosion and Protection of Metals; Chinese Academy of Sciences)(Physics Dept. of Jinan University). AN INVESTIGATION ON INITIAL OXIDATION RATE OF Ni_3Al ALLOY[J]. 中国腐蚀与防护学报, 1996, 16(3): 201-205.
[11] Wang Jia; Cao Chunan(Institute of Oceanology; Chinese Academy of Sciences )(Institute of Corrosion and Protection of Metals; Chinese Academy of SciencesThe Laboratory of Corrosion Sciences). ANODIC DESORPTION OF INHIBITORS V.INHIBITOR DESORPTION AND ANODIC PROCESSES OF METALS[J]. 中国腐蚀与防护学报, 1996, 16(2): 101-106.
[12] Lu Minxu; Zheng Xiulin (Northwestern Polytechnical University). EFFECTS OF OVERLOADING ON CORROSION FATIGUE CRACK GROWTH FOR ULTRA-HIGH STRENGTH STEEL-Ⅰ. QUANTITATIVE MODEL AND PREDICTION[J]. 中国腐蚀与防护学报, 1994, 14(3): 184-192.
No Suggested Reading articles found!