Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (4): 389-394    DOI: 10.11902/1005.4537.2016.064
Orginal Article Current Issue | Archive | Adv Search |
Application of Artificial Neural Network for Preparation Process of Ni-SiC Composite Coatings on Ti-Alloy TA15
Baohui GUO1,2(), Youxu QIU3, Hailong LI1
1 School of Physical and Engineering, Weinan Normal University, Weinan 714099, China
2 Shaanxi Research and Development Center of X-ray Detection and Application, Weinan Normal University, Weinan 714099, China
3 Zi-gong Hi-tech Innovation Service Center, Zigong 643000, China
Download:  HTML  PDF(2799KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Composite coatings of Ni-SiC were prepared on Ti-alloy TA15 by composite electroplating technology, while the effect of electroplating parameters on the coating structure was predicted by means of artificial neural network approach. The results showed that the increase of SiC particles in the plating bath and the stirring speed could lead to higher SiC content of the composite coating, which in turn resulted in higher coating hardness. Increase in cathodic current density caused higher coating growth rates, but too higher cathodic current density would also cause cracks in the coatings. Predictions of the coating growth rates and coating hardness were carried out via artificial neural network. After training, the neural network model was available for the prediction of the thickness and the hardness of the coating.

Key words:  Ti alloy      Ni-SiC electroplating      artificial neural network      prediction     
Received:  16 May 2016     
ZTFLH:  TG146.2  
Fund: Supported by Shaanxi Natural Science Fund (2015KW-022), Weinan Natural Science Fund (2015KYJ-2-4) and Weinan Normal University Natural Science Fund (17ZRRC02)
About author: 

These authors contributed equally to this work.

Cite this article: 

Baohui GUO, Youxu QIU, Hailong LI. Application of Artificial Neural Network for Preparation Process of Ni-SiC Composite Coatings on Ti-Alloy TA15. Journal of Chinese Society for Corrosion and protection, 2017, 37(4): 389-394.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.064     OR     https://www.jcscp.org/EN/Y2017/V37/I4/389

Test Factor Test results
SiC content
gL-1
Stirring speed
rmin-1
Current density
Adm-2
Plating bath temp.
Micro-hardness
HV0.49
Plating thickness
μm
1 10 50 1 40 422 46
2 10 100 2 50 443 73
3 10 200 3 60 452 90
4 10 400 4 70 459 105
5 30 50 2 60 432 70
6 30 100 1 70 471 49
7 30 200 4 40 512 102
8 30 400 3 50 529 86
9 60 50 3 70 563 87
10 60 100 4 60 632 96
11 60 200 1 50 689 52
12 60 400 2 40 718 75
13 90 50 4 50 592 98
14 90 100 3 40 636 82
15 90 200 2 70 732 68
16 90 400 1 60 738 44
Table 1  Orthogonal test results
Fig.1  Surface (a) and cross-sectional (b) BSE images, XRD pattern (c) and micro-hardness distribution profile (d) of the Ni-SiC composite coating prepared under the plating condition of test 12 in Table 1
Fig.2  Cross-sectional BSE images of the Ni-SiC composite coatings prepared using the plating parameters of test 2 (a), test 5 (b) and test 15 (c) in Table 1
Fig.3  Cross-sectional BSE images of the Ni-SiC composite coatings prepared using the plating parameters of tests 8 (a) and 13 (b) in Table 1
Fig.4  Structure diagram of the BP neural network
Fig.5  Training process of the sample using BP neural network
Test Factor Experimental result Prediction result Deviation
SiC contentgL-1 Stirring speed
rmin-1
Current density
Adm-2
Plating bath temp.
Plating thickness
μm
Micro-
hardness
HV0.49
Plating thickness μm Micro-
hardness
HV0.49
Plating thicknessdeviation / % Micro-
hardness
deviation / %
1 20 80 0.5 45 31 446 30 452 -3.2 +1.3
2 40 150 1.5 55 59 507 56 522 -5.1 +2.9
3 80 300 2.5 65 78 746 79 731 +1.2 -2.0
Table 2  Comparison between the prediction and experimental results
[1] Tarzimoghadam Z, Sandlo?bes S, Pradeep K G, et al.Microstructure design and mechanical properties in a near-α Ti-4Mo alloy[J]. Acta Mater., 2015, 97: 291
[2] Lin J P, Zhang L Q, Song X P, et al.Status of research and development of light-weight γ-TiAl intermetallic based compounds[J]. Mater. China, 2010, 29(2): 1(林均品, 张来启, 宋西平等. 轻质γ-TiAl金属间化合物的研究进展[J]. 中国材料进展, 2010, 29(2): 1)
[3] Iijima D, Yoneyama T, Doi H, et al.Wear properties of Ti and Ti-6Al-7Nb castings for dental prostheses[J]. Biomaterials, 2003, 24: 1519
[4] Xu X P, Yu Y Q, Huang H.Mechanisms of abrasive wear in the grinding of titanium (TC4) and nickel (K417) alloys[J]. Wear, 2003, 255: 1421
[5] Yao X F, Xie F Q, Han Y, et al.Effects of temperature on wear properties and friction coefficient of TC4 Alloy[J]. Rare Met. Mater. Eng., 2012, 41: 1463(姚小飞, 谢发勤, 韩勇等. 温度对TC4钛合金磨损性能和摩擦系数的影响[J]. 稀有金属材料与工程, 2012, 41: 1463)
[6] Liu C T, Schneibel J H, Maziasz P J, et al.Tensile properties and fracture toughness of TiAl alloys with controlled microstructures[J]. Intermetallics, 1996, 4: 429
[7] Liu G, Wang K H, He B B, et al.Mechanism of saturated flow stress during hot tensile deformation of a TA15 Ti alloy[J]. Mater. Des., 2015, 86: 146
[8] Vadiraj A, Kamaraj M.Effect of surface treatments on fretting fatigue damage of biomedical titanium alloys[J]. Tribol. Int., 2007, 40: 82
[9] Fu Y Q, Loh N L, Batchelor A W, et al.Improvement in fretting wear and fatigue resistance of Ti-6Al-4V by application of several surface treatments and coatings[J]. Surf. Coat. Technol., 1998, 106: 193
[10] Benea L, Ba?a S B, D?n?il? E, et al.Fretting and wear behaviors of Ni/nano-WC composite coatings in dry and wet conditions[J]. Mater. Des., 2015, 65: 550
[11] Abdelal A, Ibrahim K M, Hamid Z A.Enhancement of wear resistance of ductile cast iron by Ni-SiC composite coating[J]. Wear, 2006, 260: 1070
[12] Lee C K.Wear and corrosion behavior of electrodeposited nickel-carbon nanotube composite coatings on Ti-6Al-4V alloy in Hanks solution[J]. Tribol. Int., 2012, 55: 7
[13] Gyawali G, Hamal K, Joshi B, et al.Microstructural and electrochemical analysis of Ni-SiC composite coatings prepared in presence of additives[J]. Mater. Lett., 2014, 126: 228
[14] Hajialifini M, Amadeh A.Improvement of wear and corrosion resistance of AZ91 magnesium alloy by applying Ni-SiC nanocomposite coating via pulse electrodeposition[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 2914
[15] Wu Y T, Shen B, Lui L.Artificial neural network modelling of plating rate and phosphorus content in the coatings of electroless nickel plating[J]. J. Mater. Process. Technol., 2008, 205: 207
[16] Rashidi A M, Eivani A R, Amadeh A.Application of artificial neural networks to predict the grain size of nano-crystalline nickel coatings[J]. Comput. Mater. Sci., 2009, 45: 499
[17] Ozerdem M S, Kolukisa S.Artificial neural network approach to predict the mechanical properties of Cu-Sn-Pb-Zn-Ni cast alloys[J]. Mater. Des., 2009, 30: 764
[18] Hayajneh M, Hassan A M, Alrashdan A, et al.Prediction of tribological behavior of aluminum-copper based composite using artificial neural network[J]. J. Alloy. Compd., 2009, 470: 584
[19] Ozerdem M S.Artificial neural network approach to predict the electrical conductivity and density of Ag-Ni binary alloys[J]. J. Mater. Process. Technol., 2008, 208: 470
[20] Fazel M, Jazi M R G, Bahramzadeh S, et al. Effect of solid lubricant particles on room and elevated temperature tribological properties of Ni-SiC composite coating[J]. Surf. Coat. Technol., 2014, 254: 252
[1] Xiaodong LIN,Qunjia PENG,En-Hou HAN,Wei KE. Review of Thermal Aging of Nuclear Grade Stainless Steels[J]. 中国腐蚀与防护学报, 2017, 37(2): 81-92.
[2] Yanan NIE,Hao SHEN,Kunpeng GU,Chengqi WANG. Seawater Corrosion Resistance and Service Life Prediction of Glass Fiber Reinforced Plastic Composites[J]. 中国腐蚀与防护学报, 2016, 36(4): 357-362.
[3] Haixia LIU,Xuequn CHENG,Xiaogang LI,Kui XIAO,Chaofang DONG. Prediction Model for Corrosion of Aluminum 1060 in Marine Atmospheric Environments[J]. 中国腐蚀与防护学报, 2016, 36(4): 349-356.
[4] Xinsheng ZHANG,Naining CAO,Yayun LI. Residual Life Prediction of Buried Oil and Gas Pipelines Based on Gumbel Extreme Value Type I Distribution[J]. 中国腐蚀与防护学报, 2016, 36(4): 370-374.
[5] Jing LIU,Xiaolu LI,Chongwei ZHU,Tao ZHANG,Guanxin ZENG,Guozhe MENG,Yawei SHAO. Prediction of Critical Pitting Temperature of 316L Stainless Steel in Gas Field Environments by Artificial Neutral Network[J]. 中国腐蚀与防护学报, 2016, 36(3): 205-211.
[6] Zhian DENG,Shuyi LI,Xiaokun LI,Shan WANG,Xiaojun WANG. A Prediction Method Based on Fuzzy Neural Network for Corrosion Rate of Marine Pipelines[J]. 中国腐蚀与防护学报, 2015, 35(6): 571-576.
[7] Zhiping ZHU,Zhaohui YIN,Sen LIU,Jianfeng XIAO. Corrosion Behavior and Prediction Model for Copper Exposed in a Simulated High H2S Containing Environment[J]. 中国腐蚀与防护学报, 2015, 35(4): 333-338.
[8] HAN Xiabing,GAO Zhiming,DANG Lihua,WANG Ying,BI Huichao. Wavelet Packet Analysis of Early Corrosion Image of Q235 Steel in Simulated Atmospheric Environment[J]. 中国腐蚀与防护学报, 2013, 33(3): 211-215.
[9] LU Xiaofeng, ZHU Xiaolei, LING Xiang. A NOVEL MODEL FOR PREDICTING FLOW ACCELERATED CORROSION RATE IN REDUCER[J]. 中国腐蚀与防护学报, 2011, 31(6): 431-435.
[10] WENG Yongji. CORROSION PREDICTION AND BASIC CHEMOMETRICS[J]. 中国腐蚀与防护学报, 2011, 31(4): 245-249.
[11] WANG Chuan, WANG Zhenyao, WEI Wei, XIE Chenping, KE Wei. STATISTICAL ANALYSIS AND PREDICTIVE MODEL IN CORROSION RESEARCH[J]. 中国腐蚀与防护学报, 2010, 30(4): 306-312.
[12] ;. Gray Neural Network and Its Application to Forecasting Ocean-water Corrosion[J]. 中国腐蚀与防护学报, 2008, 28(4): 201-204 .
[13] . GREY COMBINATION MODEL APPLIES FOR PREDICTING ERODING VELOCITY OF PIPE[J]. 中国腐蚀与防护学报, 2008, 28(3): 173-176 .
[14] Haitao WANG; Enhou Han. PREDICTIVE MODEL FOR ATMOSPHERIC CORROSION OFALUMINIUM ALLOY BY ARTIFICIAL NEURAL NETWORK[J]. 中国腐蚀与防护学报, 2006, 26(5): 272-274 .
[15] Caifeng Liang. PREDICTION OF ATMOSPHERIC CORROSION FOR STEELS[J]. 中国腐蚀与防护学报, 2006, 26(3): 129-135 .
No Suggested Reading articles found!