Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (4): 347-353    DOI: 10.11902/1005.4537.2016.046
Orginal Article Current Issue | Archive | Adv Search |
Microstructure Evolution and Corrosion Behavior of Degradable Zn-7Mg Alloy After Heat Treatment
Zhenguo NIU1,2, Pushan GUO1, Hong YE2, Lijing YANG1(), Cheng XU1, Zhenlun SONG1
1 Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
2 College of Materials Science and Engineering, Chongqing University of Technology, Chongqing 400054, China
Download:  HTML  PDF(4927KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

Microstructure evolution and corrosion behavior of a degradable Zn-7Mg alloy after heat treatment was investigated by means of inductively coupled plasma emission spectrometer (ICP) and energy dispersive spectrometer (EDS), optical microscope (OM), scanning electron microscope (SEM) and X-ray diffraction (XRD) as well as electrochemical test in phosphate buffered saline (PBS). Results indicated that, the microstructure of the as-cast Zn-7Mg alloy was mainly composed of α-Zn and MgZn2, while the peritectic reaction occurred rapidly during heat treatment. After heat treatment the Zn-7Mg alloy was composed of stable phase Mg2Zn11 and a little of residual MgZn2. The phase Mg2Zn11 showed lower corrosion resistance in PBS solution than the pure zinc, therefore, the phase Mg2Zn11 should be avoided in actual production.

Key words:  Zn alloy      heat treatment      microstructure      corrosion     
Received:  06 April 2016     
ZTFLH:  TG146.1+3  
Fund: Supported by National Natural Science Foundation of China (51301193), Public Welfare Project of Zhejiang Province (2015C31031) and Natural Science Foundation of Ningbo (2015A610070)
About author: 

These authors contributed equally to this work.

Cite this article: 

Zhenguo NIU, Pushan GUO, Hong YE, Lijing YANG, Cheng XU, Zhenlun SONG. Microstructure Evolution and Corrosion Behavior of Degradable Zn-7Mg Alloy After Heat Treatment. Journal of Chinese Society for Corrosion and protection, 2017, 37(4): 347-353.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.046     OR     https://www.jcscp.org/EN/Y2017/V37/I4/347

Fig.1  Optical micrograph of as-cast Zn-7Mg alloy
Fig.2  Mg-Zn phase diagram[25]
Fig.3  SEM image of as-cast Zn-Mg alloy (a) and the magnified image of area I in Fig.3a (b)
Point C O Mg Zn Total
1 7.29 3.04 12.54 77.13 100
2 7.69 3.23 0.34 88.74 100
Table 1  EDS analysis results of different zones in Fig.3 (mass fraction / %)
Fig.4  XRD patterns of as-cast Zn-7Mg alloy after heat-treatment for different time
Fig.5  Optical graphs of Zn-7Mg alloy after heat treatment for 1 h (a), 3 h (b), 5 h (c) and 8 h (d)
Fig.6  SEM images of Zn-7Mg alloy after heat treatment for 1 h (a), 3 h (b), 5 h (c) and 8 h (d)
Point Mg Zn Total
1 0.12 99.88 100
2 7.24 92.76 100
3 15.44 84.56 100
Table 2  EDS analysis results of different zones in Fig.6a (mass fraction / %)
Fig.7  Open circuit potentials of pure zinc and Mg2Zn11 in PBS solution
Fig.8  EIS (a) and the corresponding circuit model (b) for EIS of pure zinc and Mg2Zn11 in PBS solution
Material R1 / Ωcm2 Q R2 / Ωcm2 W / μFcm-2
P / μFcm-2 n
Pure Zn 4.49 150.6 0.80 3303 801
Mg2Zn11 12.48 241.2 0.59 1161 1960
Table 3  Fitting values of electrochemical parameters of EIS
Fig.9  Polarization curves of pure zinc and Mg2Zn11 in PBS solution
[1] Tan L L, Yu X M, Wan P, et al.Biodegradable materials for bone repairs: A review[J]. J. Mater. Sci. Technol., 2013, 29: 503
[2] Moravej M, Mantovani D.Biodegradable metals for cardiovascular stent application: Interests and new opportunities[J]. Int. J. Mol. Sci., 2011, 12: 4250
[3] Zheng Y F, Gu X N, Witte F.Biodegradable metals[J]. Mater. Sci. Eng. R-Rep., 2014, 77R: 1
[4] Li H, Zheng Y, Qin L.Progress of biodegradable metals[J]. Prog. Nat. Sci.: Mater. Int., 2014, 24: 414
[5] Zhang W J, Li M H, Chen Q, et al.Effects of Sr and Sn on microstructure and corrosion resistance of Mg-Zr-Ca magnesium alloy for biomedical applications[J]. Mater. Des., 2012, 39: 379
[6] Li H F, Pang S J, Liu Y, et al.Biodegradable Mg-Zn-Ca-Sr bulk metallic glasses with enhanced corrosion performance for biomedical applications[J]. Mater. Des, 2015, 67: 9
[7] Bowen P K, Drelich J, Goldman J.A new in vitro-in vivo correlation for bioabsorbable magnesium stents from mechanical behavior[J]. Mater. Sci. Eng., 2013, C33: 5064
[8] Peuster M, Hesse C, Schloo T, et al.Long-term biocompatibility of a corrodible peripheral iron stent in the porcine descending aorta[J]. Biomaterials, 2006, 27: 4955
[9] Liu B, Zheng Y F.Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron[J]. Acta Biomater., 2011, 7: 1407
[10] Purnama A, Hermawan H, Champetier S, et al.Gene expression profile of mouse fibroblasts exposed to a biodegradable iron alloy for stents[J]. Acta Biomater., 2013, 9: 8746
[11] Staiger M P, Pietak A M, Huadmai J, et al.Magnesium and its alloys as orthopedic biomaterials: A review[J]. Biomaterials, 2006, 27: 1728
[12] Zeng R, Dietzel W, Witte F, et al.Progress and challenge for magnesium alloys as biomaterials[J]. Adv. Eng. Mater., 2008, 10: B3
[13] Witte F.The history of biodegradable magnesium implants: A review[J]. Acta Biomater., 2010, 6: 1680
[14] Huang T, Cheng J, Zheng Y F.In vitro degradation and biocompatibility of Fe-Pd and Fe-Pt composites fabricated by spark plasma sintering[J]. Mater. Sci. Eng., 2014, C35: 43
[15] Schinhammer M, H?nzi A C, L?ffler J F, et al.Design strategy for biodegradable Fe-based alloys for medical applications[J]. Acta Biomater., 2010, 6: 1705
[16] Haase H, Rink L.Zinc signals and immune function[J]. Biofactors, 2014, 40: 27
[17] Bowen P K, Drelich J, Goldman J.Zinc exhibits ideal physiological corrosion behavior for bioabsorbable stents[J]. Adv. Mater., 2013, 25: 2577
[18] Vojtěch D, Kubasek J, ?erák J, et al.Mechanical and corrosion properties of newly developed biodegradable Zn-based alloys for bone fixation[J]. Acta Biomater., 2011, 7: 3515
[19] Yao C Z, Wang Z C, Tay S L, et al.Effects of Mg on microstructure and corrosion properties of Zn-Mg alloy[J]. J. Alloy. Compd.,2014, 602: 101
[20] Gong H B, Wang K, Strich R, et al.In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy[J]. J. Biomed. Mater. Res. Part B, 2015, 103: 1632
[21] Li H F, Xie X H, Zheng Y F, et al.Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr[J]. Sci. Rep., 2015, 5: 10719
[22] Li H F, Yang H T, Zheng Y F, et al.Design and characterizations of novel biodegradable ternary Zn-based alloys with IIA nutrient alloying elements Mg, Ca and Sr[J]. Mater. Des., 2015, 83: 95
[23] Kubásek J, Vojtěch D, Jablonská E, et al.Structure, mechanical characteristics and in vitro degradation, cytotoxicity, genotoxicity and mutagenicity of novel biodegradable Zn-Mg alloys[J]. Mater. Sci. Eng., 2016, C58: 24
[24] Dambatta M S, Izman S, Kurniawan D, et al.Influence of thermal treatment on microstructure, mechanical and degradation properties of Zn-3Mg alloy as potential biodegradable implant material[J]. Mater. Des., 2015, 85: 431
[25] Nagasaki S, Hirabayashi M.Translated by Liu A S. Binary Alloy Phase-diagrams [M]. Beijing: Metallurgical Industry Press, 2004(长崎诚三, 平林真著. 刘安生译. 二元合金状态图集 [M]. 北京: 冶金工业出版社, 2004)
[26] Prosek T, Nazarov A, Bexell U, et al.Corrosion mechanism of model zinc-magnesium alloys in atmospheric conditions[J]. Corros. Sci., 2008, 50: 2216
[27] Cao C N, Zhang J Q.An introduction to Electrochemical Impedance Spectroscopy [M]. Beijing: Science Press, 2002(曹楚南, 张鉴清. 电化学阻抗谱导论 [M]. 北京: 科学出版社, 2002)
[1] HUANG Peng, GAO Rongjie, LIU Wenbin, YIN Xubao. Fabrication of Superamphiphobic Surface for Nickel-plate on Pipeline Steel by Salt Solution Etching and Its Anti-corrosion Properties[J]. 中国腐蚀与防护学报, 2021, 41(1): 96-100.
[2] DONG Xucheng, GUAN Fang, XU Liting, DUAN Jizhou, HOU Baorong. Progress on the Corrosion Mechanism of Sulfate-reducing Bacteria in Marine Environment on Metal Materials[J]. 中国腐蚀与防护学报, 2021, 41(1): 1-12.
[3] TANG Rongmao, ZHU Yichen, LIU Guangming, LIU Yongqiang, LIU Xin, PEI Feng. Gray Correlative Degree Analysis of Q235 Steel/conductive Concrete Corrosion in Three Typical Soil Environments[J]. 中国腐蚀与防护学报, 2021, 41(1): 110-116.
[4] HAN Yuetong, ZHANG Pengchao, SHI Jiefu, LI Ting, SUN Juncai. Surface Modification of TA1 Bipolar Plate for Proton Exchange Membrane Fuel Cell[J]. 中国腐蚀与防护学报, 2021, 41(1): 125-130.
[5] ZHANG Yuxuan, CHEN Cuiying, LIU Hongwei, LI Weihua. Research Progress on Mildew Induced Corrosion of Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 13-21.
[6] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[7] BAI Yunlong, SHEN Guoliang, QIN Qingyu, WEI Boxin, YU Changkun, XU Jin, SUN Cheng. Effect of Thiourea Imidazoline Quaternary Ammonium Salt Corrosion Inhibitor on Corrosion of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2021, 41(1): 60-70.
[8] ZUO Yong, CAO Mingpeng, SHEN Miao, YANG Xinmei. Effect of Mg on Corrosion of 316H Stainless Steel in Molten Salts MgCl2-NaCl-KCl[J]. 中国腐蚀与防护学报, 2021, 41(1): 80-86.
[9] WANG Yating, WANG Kexu, GAO Pengxiang, LIU Ran, ZHAO Dishun, ZHAI Jianhua, QU Guanwei. Inhibition for Zn Corrosion by Starch Grafted Copolymer[J]. 中国腐蚀与防护学报, 2021, 41(1): 131-138.
[10] WANG Xintong, CHEN Xu, HAN Zhenze, LI Chengyuan, WANG Qishan. Stress Corrosion Cracking Behavior of 2205 Duplex Stainless Steel in 3.5%NaCl Solution with Sulfate Reducing Bacteria[J]. 中国腐蚀与防护学报, 2021, 41(1): 43-50.
[11] SHI Kunyu, WU Weijin, ZHANG Yi, WAN Yi, YU Chuanhao. Electrochemical Properties of Nb Coating on TC4 Substrate in Simulated Body Solution[J]. 中国腐蚀与防护学报, 2021, 41(1): 71-79.
[12] ZHENG Li, WANG Meiting, YU Baoyi. Research Progress of Cold Spraying Coating Technology for Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 22-28.
[13] WEI Zheng, MA Baoji, LI Long, LIU Xiaofeng, LI Hui. Effect of Ultrasonic Rolling Pretreatment on Corrosion Resistance of Micro-arc Oxidation Coating of Mg-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 117-124.
[14] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[15] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
No Suggested Reading articles found!