Please wait a minute...
Journal of Chinese Society for Corrosion and protection  2017, Vol. 37 Issue (3): 279-286    DOI: 10.11902/1005.4537.2016.023
Orginal Article Current Issue | Archive | Adv Search |
Pitting Corrosion of 7020 Aluminum Alloy in 3.5%NaCl Solution
Yun DAI1,2,3,Shengdan LIU1,2,3(),Yunlai DENG1,2,3,Xinming ZHANG1,2,3
1 School of Materials Science and Engineering, Central South University, Changsha 410083, China
2 Key Laboratory of Nonferrous Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, China
3 Nonferrous Metal Oriented Advanced Structural Materials and Manufacturing Cooperative Innovation Centre, Changsha 410083, China
Download:  HTML  PDF(7081KB) 
Export:  BibTeX | EndNote (RIS)      
Abstract  

The pitting corrosion behavior of 7020 aluminum alloy in 3.5%(mass fraction) NaCl solution was investigated by immersion test and cyclic polarization curve, while the corrosion morphology of the alloy was characterized by means of optical microscopy (OM), scanning electron microscopy (SEM) and scanning transmission electron microscopy (STEM). The results show that the curve of maximum depth of corrosion pits versus time exhibits ''S''-like shape. α-AlFeSiMn phase may act as a local cathode, thereby de-alloying occurred around particles of α-AlFeSiMn phase, i.e. Al matrix nearby the particles of α-AlFeSiMn phase was dissolved due to its anode nature, while Mn-and Cr-containing precipitates in the matrix may fall off along with the dissolved Al. Pitting susceptibility reduces in the later stage of corrosion due to that the formed corrosion products may act as a protective barrier for the alloy to some extent.

Key words:  7020 aluminum alloy      pitting corrosion      corrosion dynamics      second phase      cyclicpolarization curve     
Received:  04 February 2016     

Cite this article: 

Yun DAI,Shengdan LIU,Yunlai DENG,Xinming ZHANG. Pitting Corrosion of 7020 Aluminum Alloy in 3.5%NaCl Solution. Journal of Chinese Society for Corrosion and protection, 2017, 37(3): 279-286.

URL: 

https://www.jcscp.org/EN/10.11902/1005.4537.2016.023     OR     https://www.jcscp.org/EN/Y2017/V37/I3/279

Fig.1  SEM image (a) and EDS result (b) of second phase in 7020 aluminum alloy
Fig.2  HAADF image (a) and EDS result (b) of dispersed phase in 7020 aluminum alloy
Fig.3  OM images of 7020 aluminum alloy after immersion for 168 h (a), 504 h (b), 840 h (c) and 1176 h (d)
Fig.4  Cross section of 7020 aluminum alloy after immersion for 1176 h (a) and the magnified image of the square area in Fig.4a
Fig.5  Corrosion dynamics curve of maximum pitting corrosion depth vs time
Fig.6  SEM images of 7020 aluminum alloy after immersion for 168 h (a), 504 h (b), 840 h (c) and 1176 h (d)
Fig.7  SEM images (a, c) and EDS results (b, d) of 7020 aluminum alloy after immersion for 168 h (a, b) and 1176 h (c, d)
Time / h O Al Si Fe Mn
0 --- 68.73~85.74 4.60~5.43 16.39~20.90 3.93~4.19
168 6.71~8.19 55.02~61.11 5.23~6.14 14.75~19.28 3.23~3.41
1176 10.10~17.13 47.42~49.75 3.09~4.47 11.43~13.25 2.64~3.29
Table 1  Chemical compositions of the second phase in 7020 aluminum alloy after immersion for different time(mass fraction / %)
Fig.8  Polarization curves of 7020 aluminum alloy after immersion for different time
Timeh EcorrmV EpitmV ErpmV |Epit-Erp|mV IcorrμAcm-2
0 -647 -572 -527 50 0.74
168 -967 -596 -546 50 15.60
504 -922 -622 -577 45 2.16
840 -974 -689 -663 26 137.00
1176 -1122 -642 -534 108 104.00
Table 2  Polarization characteristics for 7020 aluminum alloy after immersion for different time
[1] Gou G Q, Huang N, Chen H, et al.Research on stress corrosion behavior of A7N01S-T5 aluminum alloy for high speed train[J]. Mater. Sci. Technol., 2012, 20(4): 134
[1] (苟国庆, 黄楠, 陈辉等. 高速列车A7N01S-T5铝合金应力腐蚀行为研究[J]. 材料科学与工艺, 2012, 20(4): 134)
[2] Zhao M, Jiang D X.Study on the pitting sensitivity of A7N01S-T5 aluminum alloy in degreasers[J]. Total Corros. Control, 2014, 28(1): 65
[2] (赵民, 姜代旬. A7N01S-T5型铝合金在清洗剂中的点蚀敏感性研究[J]. 全面腐蚀控制, 2014, 28(1): 65)
[3] Grilli R, Baker M A, Castle J E, et al.Localized corrosion of a 2219 aluminium alloy exposed to a 3.5%NaCl solution[J]. Corros. Sci., 2010, 52: 2855
[4] Wang X H, Wang J H, Fu C W.Characterization of pitting corrosion of 7A60 aluminum alloy by EN and EIS techniques[J]. Trans. Nonferrous Met. Soc. China, 2014, 24: 3907
[5] Sameljuk A V, Neikov O D, Krajnikov A V, et al.Effect of rapid solidification on the microstructure and corrosion behaviour of Al-Zn-Mg based material[J]. Corros. Sci., 2007, 49: 276
[6] Ismael M K.Corrosion resistance of aluminum alloy 7020-T6 in sea water[J]. Eng. Technol. J., 2011, 29: 1482
[7] Al Sammarraie A M A, Ameen H A, Al-Rubaiey I S J, et al. Evaluation of the pitting corrosion for aluminum alloys 7020 in 3.5%NaCl solution with range of temperature (100~500) ℃[J]. Am. J. Sci. Ind. Res., 2011, 2: 283
[8] Zaid B, Saidi D, Benzaid A, et al.Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy[J]. Corros. Sci., 2008, 50: 1841
[9] Song T.Investigation of ageing technics and microstructure analysis of 6N01 and 7N01 alloys [D]. Chongqing: Chongqing University, 2011
[9] (宋涛. 6N01和7N01时效工艺研究和组织分析 [D]. 重庆: 重庆大学, 2011)
[10] Hu Y L, Li D, Guo B L.Statistical study of corrosion dynamics law and method to predict calendar life for LY12CZ aluminum alloy[J]. Acta Aeronaut. Astronaut. Sin., 2000, 21(suppl.): 53
[10] (胡艳玲, 李荻, 郭宝兰. LY12CZ铝合金型材的腐蚀动力学统计规律研究及日历寿命预测方法探讨[J]. 航空学报, 2000, 21(增刊): 53)
[11] Song S Z, Tang Z L.An electrochemical impedance analysis on aluminium in 3.5%NaCl solution[J]. J. Chin. Soc. Corros. Prot., 1996, 16: 127
[11] (宋诗哲, 唐子龙. 工业纯铝在3.5%NaC1 溶液中的电化学阻抗谱分析[J]. 中国腐蚀与防护学报, 1996, 16: 127)
[12] Song F X, Zhang X M, Liu S D, et al.Anisotropy of localized corrosion in 7050-T7451 Al alloy thick plate[J]. Trans. Nonferrous Met. Soc. China, 2013, 23: 2483
[13] Cui J H.The corrosion behavior of aluminum alloys and the organic coating in simulated atmospheric environment [D]. Beijing: University of Science & Technology Beijing, 2009
[13] (崔继红. 模拟大气环境下铝合金及其有机涂层的腐蚀行为 [D]. 北京: 北京科技大学, 2009)
[14] Deng Y, Ye R, Xu G F, et al.Corrosion behaviour and mechanism of new aerospace Al-Zn-Mg alloy friction stir welded joints and the effects of secondary Al3ScxZr1-x nanoparticles[J]. Corros. Sci., 2015, 90: 359
[15] Winkler S L, Ryan M P, Flower H M.Pitting corrosion in cast 7XXX aluminium alloys and fibre reinforced MMCs[J]. Corros. Sci., 2004, 46: 893
[16] Trueba M, Trasatti S P.Study of Al alloy corrosion in neutral NaCl by the pitting scan technique[J]. Mater. Chem. Phys., 2010, 121: 523
[17] Birbilis N, Cavanaugh M K, Buchheit R G.Electrochemical behavior and localized corrosion associated with Al7Cu2Fe particles in aluminum alloy 7075-T651[J]. Corros. Sci., 2006, 48: 4202
[18] Arrabal R, Mingo B, Pardo A, et al.Pitting corrosion of rheocast A356 aluminium alloy in 3.5wt.% NaCl solution[J]. Corros. Sci., 2013, 73: 342
[19] Zhang C, Wang R C, Feng Y, et al.Effects of alloying elements on electrochemical performance of aluminum anodes[J]. J. Central South Univ.(Sci. Technol.), 2012, 43: 81
[19] (张纯, 王日初, 冯艳等. 合金元素对铝阳极电化学性能的影响[J]. 中南大学学报(自然科学版), 2012, 43: 81)
[20] Wloka J, Hack T, Virtanen S.Influence of temper and surface condition on the exfoliation behaviour of high strength Al-Zn-Mg-Cu alloys[J]. Corros. Sci., 2007, 49: 1437
[1] RAN Dou, MENG Huimin, LIU Xing, LI Quande, GONG Xiufang, NI Rong, JIANG Ying, GONG Xianlong, DAI Jun, LONG Bin. Effect of pH on Corrosion Behavior of 14Cr12Ni3WMoV Stainless Steel in Chlorine-containing Solutions[J]. 中国腐蚀与防护学报, 2021, 41(1): 51-59.
[2] YU Hongfei, SHAO Bo, ZHANG Yue, YANG Yange. Preparation and Properties of Zr-based Conversion Coating on 2A12 Al-alloy[J]. 中国腐蚀与防护学报, 2021, 41(1): 101-109.
[3] ZHANG Hao, DU Nan, ZHOU Wenjie, WANG Shuaixing, ZHAO Qing. Effect of Fe3+ on Pitting Corrosion of Stainless Steel in Simulated Seawater[J]. 中国腐蚀与防护学报, 2020, 40(6): 517-522.
[4] YU Haoran, ZHANG Wenli, CUI Zhongyu. Difference in Corrosion Behavior of Four Mg-alloys in Cl--NH4+-NO3- Containing Solution[J]. 中国腐蚀与防护学报, 2020, 40(6): 553-559.
[5] DAI Mingjie, LIU Jing, HUANG Feng, HU Qian, LI Shuang. Pitting Corrosion Behavior of X100 Pipeline Steel in a Simulated Acidic Soil Solution under Fluctuated Cathodic Protection Potentials Based on Orthogonal Method[J]. 中国腐蚀与防护学报, 2020, 40(5): 425-431.
[6] ZHANG Xin, YANG Guangheng, WANG Zehua, CAO Jing, SHAO Jia, ZHOU Zehua. Corrosion Behavior of Al-Mg-RE Alloy Wires Subjected to Different Cold Drawing Deformation[J]. 中国腐蚀与防护学报, 2020, 40(5): 432-438.
[7] HE San, SUN Yinjuan, ZHANG Zhihao, CHENG Jie, QIU Yunpeng, GAO Chaoyang. Corrosion Behavior of 20# Steel in Alkanolamine Solution Mixed with Ionic Liquid Containing Saturated CO2[J]. 中国腐蚀与防护学报, 2020, 40(4): 309-316.
[8] LI Qing, ZHANG Deping, WANG Wei, WU Wei, LU Lin, AI Chi. Evaluation of Actual Corrosion Status of L80 Tubing Steel and Subsequent Electrochemical and SCC Investigation in Lab[J]. 中国腐蚀与防护学报, 2020, 40(4): 317-324.
[9] Yu LI,Lei GUAN,Guan WANG,Bo ZHANG,Wei KE. Influence of Mechanical Stresses on Pitting Corrosion of Stainless Steel[J]. 中国腐蚀与防护学报, 2019, 39(3): 215-226.
[10] Zhimin FAN, Jin YU, Yingwei SONG, Dayong SHAN, En-Hou HAN. Research Progress of Pitting Corrosion of Magnesium Alloys[J]. 中国腐蚀与防护学报, 2018, 38(4): 317-325.
[11] Yong ZHOU, Yu ZUO, Fu-an YAN. Effect and Mechanism of Inhibitors on Pitting Corrosion of Metals[J]. 中国腐蚀与防护学报, 2017, 37(6): 487-494.
[12] Weihang ZHAO, Haowei WANG, Guangyi CAI, Zehua DONG. Localized Corrosion and Corrosion Inhibitor of Al-alloy AA6061 Beneath Electrolyte Layers[J]. 中国腐蚀与防护学报, 2017, 37(4): 366-374.
[13] Deqiang LIU,Liming KE,Weiping XU,Li XING,Yuqing MAO. Intergranular Corrosion Behavior of Friction-stir Welding Joint for 20 mm Thick Plate of 7075 Al-alloy[J]. 中国腐蚀与防护学报, 2017, 37(3): 293-299.
[14] Di ZHANG,Ping LIANG,Yunxia ZHANG,Yanhua SHI,Hua QIN. Effect of Corrosion Product Film Formed in Artificial Solution Simulated Soil Medium at Ku'erle Area onPitting Corrosion Behavior of X80 Pipeline Steel[J]. 中国腐蚀与防护学报, 2016, 36(4): 313-320.
[15] Yangheng LI,Yu ZUO,Yuming TANG,Xuhui ZHAO. Pitting Corrosion Behavior of Q235 Carbon Steel in NaHCO3+NaCl Solution under Strain[J]. 中国腐蚀与防护学报, 2016, 36(3): 238-244.
No Suggested Reading articles found!